The Trapping Redundancy of Linear Block Codes

被引:16
|
作者
Laendner, Stefan [1 ]
Hehn, Thorsten [1 ]
Milenkovic, Olgica [2 ]
Huber, Johannes B. [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Informat Transmiss, D-91058 Erlangen, Germany
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
Belief propagation (BP); low-density parity-check (LDPC) codes; Margulis codes; projective geometry (PG) codes; trapping redundancy; trapping sets; PARITY-CHECK CODES; STOPPING REDUNDANCY; CAPACITY;
D O I
10.1109/TIT.2008.2008134
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We generalize the notion of the stopping redundancy in order to study the smallest size of a trapping set in Tanner graphs of linear block codes. In this context, we introduce the notion of the trapping redundancy of a code, which quantifies the relationship between the number of redundant rows in any parity-check matrix of a given code and the size of its smallest trapping set. Trapping sets with certain parameter sizes are known to cause error-floors in the performance curves of iterative belief propagation (BP) decoders, and it is therefore important to identify decoding matrices that avoid such sets. Bounds on the trapping redundancy are obtained using probabilistic and constructive methods, and the analysis covers both general and elementary trapping sets. Numerical values for these bounds are computed for the [2640, 1320] Margulis code and the class of projective geometry codes, and compared with some new code-specific trapping set size estimates.
引用
收藏
页码:53 / 63
页数:11
相关论文
共 50 条
  • [1] Probabilistic bounds on the trapping redundancy of linear codes
    Tsunoda, Yu
    Fujiwara, Yuichiro
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1745 - 1749
  • [2] Redundancy Allocation of Partitioned Linear Block Codes
    Kim, Yongjune
    Kumar, B. V. K. Vijaya
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 2374 - 2378
  • [3] An Upper Bound on the Separating Redundancy of Linear Block Codes
    Abdel-Ghaffar, Khaled A. S.
    Weber, Jos H.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1173 - 1177
  • [4] Permutation decoding and the stopping redundancy hierarchy of linear block codes
    Hehn, Thorsten
    Milenkovic, Olgica
    Laendner, Stefan
    Huber, Johannes B.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-7, 2007, : 2926 - +
  • [5] On the Minimum Redundancy of SEC-DAEC-TAEC Binary Linear Block Codes
    Vijayakumaran, Saravanan
    Pal, Debasattam
    IEEE COMMUNICATIONS LETTERS, 2016, 20 (04) : 652 - 655
  • [6] A Note on the Stopping Redundancy of Linear Codes
    Shu-Tao Xia
    Journal of Computer Science and Technology, 2006, 21 : 950 - 951
  • [7] On the Pseudocodeword Redundancy of Binary Linear Codes
    Zumbraegel, Jens
    Skachek, Vitaly
    Flanagan, Mark F.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (07) : 4848 - 4861
  • [8] A note on the stopping redundancy of linear codes
    Xia, Shu-Tao
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2006, 21 (06) : 950 - 951
  • [9] Separating Redundancy of Linear MDS Codes
    Abdel-Ghaffar, Khaled A. S.
    Weber, Jos H.
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 1894 - +
  • [10] Asymptotic average redundancy of adaptive block codes
    Reznik, YA
    Szpankowski, W
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 79 - 79