Score-based generative models for calorimeter shower simulation

被引:43
|
作者
Mikuni, Vinicius [1 ]
Nachman, Benjamin [2 ,3 ]
机构
[1] Berkeley Lab, Natl Energy Res Sci Comp Ctr, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Phys Div, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Berkeley Inst Data Sci, Berkeley, CA 94720 USA
关键词
D O I
10.1103/PhysRevD.106.092009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Score-based generative models are a new class of generative algorithms that have been shown to produce realistic images even in high dimensional spaces, currently surpassing other state-of-the-art models for different benchmark categories and applications. In this work we introduce CaloScore, a score-based generative model for collider physics applied to calorimeter shower generation. Three different diffusion models are investigated using the Fast Calorimeter Simulation Challenge 2022 dataset. CaloScore is the first application of a score-based generative model in collider physics and is able to produce high-fidelity calorimeter images for all datasets, providing an alternative paradigm for calorimeter shower simulation.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Fluorescence molecular tomography via score-based generative model
    He, Peng
    Lin, Jiayuan
    Zhu, Yin
    Wan, Qiao
    Wu, Chengzhong
    Wan, Wenbo
    Liu, Qiegen
    OPTICS AND LASERS IN ENGINEERING, 2025, 187
  • [32] Score-based generative modeling for de novo protein design
    Lee, Jin Sub
    Kim, Jisun
    Kim, Philip M.
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (05): : 382 - 392
  • [33] Fast and Reliable Score-Based Generative Model for Parallel MRI
    Hou, Ruizhi
    Li, Fang
    Zeng, Tieyong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (01) : 953 - 966
  • [34] Deep Generative Models for Fast Photon Shower Simulation in ATLAS
    Aad G.
    Abbott B.
    Abbott D.C.
    Abud A.A.
    Abeling K.
    Abhayasinghe D.K.
    Abidi S.H.
    Aboulhorma A.
    Abramowicz H.
    Abreu H.
    Abulaiti Y.
    Hoffman A.C.A.
    Acharya B.S.
    Achkar B.
    Adam L.
    Bourdarios C.A.
    Adamczyk L.
    Adamek L.
    Addepalli S.V.
    Adelman J.
    Adiguzel A.
    Adorni S.
    Adye T.
    Affolder A.A.
    Afik Y.
    Agaras M.N.
    Agarwala J.
    Aggarwal A.
    Agheorghiesei C.
    Aguilar-Saavedra J.A.
    Ahmad A.
    Ahmadov F.
    Ahmed W.S.
    Ai X.
    Aielli G.
    Aizenberg I.
    Akbiyik M.
    Åkesson T.P.A.
    Akimov A.V.
    Khoury K.A.
    Alberghi G.L.
    Albert J.
    Albicocco P.
    Verzini M.J.A.
    Alderweireldt S.
    Aleksa M.
    Aleksandrov I.N.
    Alexa C.
    Alexopoulos T.
    Alfonsi A.
    Computing and Software for Big Science, 2024, 8 (1)
  • [35] Score-based generative modeling for de novo protein design
    Jin Sub Lee
    Jisun Kim
    Philip M. Kim
    Nature Computational Science, 2023, 3 : 382 - 392
  • [36] Diffusion Schrodinger Bridge with Applications to Score-Based Generative Modeling
    De Bortoli, Valentin
    Thornton, James
    Heng, Jeremy
    Doucet, Arnaud
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [37] Provable Probabilistic Imaging Using Score-Based Generative Priors
    Sun, Yu
    Wu, Zihui
    Chen, Yifan
    Feng, Berthy T.
    Bouman, Katherine L.
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2024, 10 : 1290 - 1305
  • [38] Score-based Generative Modeling Secretly Minimizes the Wasserstein Distance
    Kwon, Dohyun
    Fan, Ying
    Lee, Kangwook
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [39] Convergence of score-based generative modeling for general data distributions
    Lee, Holden
    Lu, Jianfeng
    Tan, Yixin
    INTERNATIONAL CONFERENCE ON ALGORITHMIC LEARNING THEORY, VOL 201, 2023, 201 : 946 - 985
  • [40] Fast FILTERSIM simulation with score-based distance
    Wu, Jianbing
    Zhang, Tuanfeng
    Journel, Andre
    MATHEMATICAL GEOSCIENCES, 2008, 40 (07) : 773 - 788