THE q-DEFORMED CAMPBELL-BAKER-HAUSDORFF-DYNKIN THEOREM

被引:1
|
作者
Achilles, Ruediger [1 ]
Bonfiglioli, Andrea [1 ]
Katriel, Jacob [2 ]
机构
[1] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
[2] Technion Israel Inst Technol, Dept Chem, IL-32000 Haifa, Israel
关键词
Exponential theorem; Campbell-Baker-Hausdoff-Dynkin (CBHD) series; q-calculus; q-deformed CBHD series; q-commutator identities; Q-EXPONENTIALS; Q-ANALOG;
D O I
10.3934/era.2015.22.32
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We announce an analogue of the celebrated theorem by Campbell, Baker, Hausdorff, and Dynkin for the q-exponential exp(q)(x)= Sigma(infinity)(n=0) x(n)/[n]q!, [n] q!, with the usual notation for q-factorials: [n]q! := [n-1] q! . (q(n)-1)/(q-1) and [0]q! := 1. Our result states that if x and y are non-commuting indeterminates and [y,x](q) is the q-commutator yx - q xy, then there exist linear combinations Q(i,j) (x,y) of iterated q-commutators with exactly i x's, j y's and [y,x](q) in their central position, such that exp(q)(x) exp(q)(y) = exp(q) (x + y + Sigma(i,j >= 1) Q(i,j) (x,y)). Our expansion is consistent with the well-known result by Schutzenberger ensuring that one has exp(q) (x) exp(q) (y) = exp(q) (x vertical bar y) if and only if [y, x](q) = 0, and it improves former partial results on q - deformed exponentiation. Furthermore, we give an algorithm which produces conjecturally a minimal generating set for the relations between [y, x](q)-centered q-commutators of any bidegree (i,j), and it allows us to compute all possible Q(i,j).
引用
收藏
页码:32 / 45
页数:14
相关论文
共 50 条
  • [41] q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy
    He, Jingsong
    Li, Yinghua
    Cheng, Yi
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2
  • [42] EXTENSION OF Q-DEFORMED ANALYSIS AND Q-DEFORMED MODELS OF CLASSICAL MECHANICS
    KLIMEK, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (04): : 955 - 967
  • [43] q-deformed Fermions
    Swamy, PN
    EUROPEAN PHYSICAL JOURNAL B, 2006, 50 (1-2): : 291 - 294
  • [44] q-deformed Fermions
    P. Narayana Swamy
    The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 50 : 291 - 294
  • [45] An algorithm for the Baker-Campbell-Hausdorff formula
    Matone, Marco
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05): : 1 - 9
  • [46] Explicit Baker-Campbell-Hausdorff Expansions
    Van-Brunt, Alexander
    Visser, Matt
    MATHEMATICS, 2018, 6 (08):
  • [47] q-deformed superalgebras
    Schmidt, Alexander
    Wachter, Hartmut
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (12):
  • [48] Some comments on q-deformed oscillators and q-deformed su(2) algebras
    Kwek, LC
    Oh, CH
    EUROPEAN PHYSICAL JOURNAL C, 1998, 5 (01): : 189 - 193
  • [49] An algorithm for the Baker-Campbell-Hausdorff formula
    Marco Matone
    Journal of High Energy Physics, 2015
  • [50] q-deformed phonons
    Swamy, PN
    MODERN PHYSICS LETTERS B, 1996, 10 (1-2): : 23 - 28