New Z3 strings

被引:1
|
作者
Kneipp, Marco A. C. [1 ]
Liebgott, Paulo J. [1 ]
机构
[1] Univ Fed Santa Catarina, Dept Fis, Campus Univ, BR-88040900 Florianopolis, SC, Brazil
关键词
Z(n) strings; Yang-Mills-Higgs theories; Topological solutions; Confinement; ELECTRICALLY CHARGED VORTICES; MASS-SPECTRUM; AFFINE;
D O I
10.1016/j.physletb.2016.10.038
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider a Yang-Mills-Higgs theory with the gauge group SU(3) broken to its center Z(3) by two scalar fields in the adjoint representation and obtain new Z(3) strings asymptotic configurations with the gauge field and magnetic field in the direction of the step operators. (C) 2016 The Author(s). Published by Elsevier B.V.
引用
收藏
页码:186 / 189
页数:4
相关论文
共 50 条
  • [12] TWISTED SECTOR YUKAWA COUPLINGS FOR THE Z3 X Z3 ORBIFOLD
    BAILIN, D
    LOVE, A
    SABRA, WA
    MODERN PHYSICS LETTERS A, 1992, 7 (38) : 3607 - 3615
  • [13] Non-perturbative and flux superpotentials for type I strings on the Z3 orbifold
    Bianchi, Massimo
    Kiritsis, Elias
    NUCLEAR PHYSICS B, 2007, 782 (1-2) : 26 - 50
  • [14] 新Z3会比老Z3更加辉煌吗?
    张淑珍
    汽车维修与保养, 1999, (05) : 86 - 88
  • [15] Simplicity surfaces:: a new definition of surfaces in Z3
    Couprie, M
    Bertrand, G
    VISION GEOMETRY VII, 1998, 3454 : 40 - 51
  • [16] Extended Z3 Array
    Alexandru-Ioan, Lungu
    2021 23RD INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2021), 2021, : 267 - 274
  • [17] One-dimensional model for deconfined criticality with Z3 x Z3 symmetry
    Roberts, Brenden
    Jiang, Shenghan
    Motrunich, Olexei, I
    PHYSICAL REVIEW B, 2021, 103 (15)
  • [18] Torsion of polygons in Z3
    Tesi, M. C.
    Janse van Rensburg, E. J.
    Orlandini, E.
    Whittington, S. G.
    Journal of Physics A: Mathematical and General, 30 (14):
  • [19] Arithmetic Solving in Z3
    Bjorner, Nikolaj
    Nachmanson, Lev
    COMPUTER AIDED VERIFICATION, PT I, CAV 2024, 2024, 14681 : 26 - 41
  • [20] Toward the Z3*-theorem
    Toborg, Imke
    Waldecker, Rebecca
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (07) : 2851 - 2889