Derivation of Statistical Model of Grain Growth Based on 3-D Von Neumann Equation

被引:1
|
作者
Abbruzzese, Giuseppe Carlo [1 ]
机构
[1] Ctr Sviluppo Mat SpA, I-00128 Rome, Italy
来源
关键词
3-D Von Neumann Equation; Grain Growth; Statistical Theory; TOPOLOGICAL FOUNDATION;
D O I
10.4028/www.scientific.net/MSF.715-716.427
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The derivation of an equivalent 3-D Von Neumann equation and the corresponding kinetics equation in terms of geometrical characteristics of a grain is shown and the formulation is provided in the framework of the statistical theory of grain growth. The topological relationships between number of grain faces, grain size, number of corners and edges and how these can be calculated in a real microstructure with a statistical approach are discussed. A quadratic law for the linkage between number of faces and grain size is found and compared with available experimental results. Inside the above description a basic formulation of the statistical theory will be derived based on simple geometrical and statistical principles without any independent assumption
引用
收藏
页码:427 / 436
页数:10
相关论文
共 50 条
  • [31] Subthreshold current model of FinFETs based on analytical solution of 3-D Poisson's equation
    Havaldar, DS
    Katti, G
    DasGupta, N
    DasGupta, A
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (04) : 737 - 742
  • [32] 3-D SPECT SIMULATIONS OF A COMPLEX 3-D MATHEMATICAL BRAIN MODEL - EFFECTS OF 3-D GEOMETRIC DETECTOR RESPONSE, ATTENUATION, SCATTER, AND STATISTICAL NOISE
    KIM, HJ
    ZEEBERG, BR
    FAHEY, FH
    HOFFMAN, EJ
    REBA, RC
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1992, 11 (02) : 176 - 184
  • [33] IMPROVED 3-D FACIAL REPRESENTATION THROUGH STATISTICAL SHAPE MODEL
    Quan, Wei
    Matuszewski, Bogdan J.
    Shark, Lik-Kwan
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 2433 - 2436
  • [34] Direct observation of 3-D grain growth in Al-0.1% Mn
    Schmidt, S.
    Olsen, U. L.
    Poulsen, H. F.
    Sorensen, H. O.
    Lauridsen, E. M.
    Margulies, L.
    Maurice, C.
    Jensen, D. Juul
    SCRIPTA MATERIALIA, 2008, 59 (05) : 491 - 494
  • [35] 2- and 3-D curvature driven vertex simulations of grain growth
    Maurice, C
    Humphreys, J
    GRAIN GROWTH IN POLYCRYSTALLINE MATERIALS III, 1998, : 81 - 90
  • [36] Testing a curvature driven moving finite element grain growth model with the generalized three dimensional von Neumann relation
    Uyar, Fatma
    Wilson, Seth R.
    Gruber, Jason
    Lee, Sukbin
    Sintay, Stephen
    Rollett, Anthony D.
    Srolovitz, David J.
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2009, 100 (04) : 543 - 549
  • [37] Heat Dissipation Derivation and Optimization of the Fan-Out 3-D Package Model
    Huang, Jinfeng
    He, Zhenzhi
    Gutierrez, Hector
    Zhao, Libo
    Lu, Xiangning
    IEEE TRANSACTIONS ON COMPONENTS PACKAGING AND MANUFACTURING TECHNOLOGY, 2021, 11 (09): : 1461 - 1470
  • [38] THE DERIVATION OF 3-D SURFACE SHAPE FROM SHADOWS
    HATZITHEODOROU, M
    IMAGE UNDERSTANDING WORKSHOP /, 1989, : 1012 - 1020
  • [39] Statistical model of grain growth in polycrystalline nanomaterials
    Tengen, T. B.
    Wejrzanowski, T.
    Iwankiewicz, R.
    Kurzydlowski, K. J.
    Multiscale Kinetic Modelling of Materials, 2007, 129 : 157 - 163
  • [40] On a fourth order equation in 3-D
    Xu, XW
    Yang, PC
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 8 : 1029 - 1042