The degree profile of random Polya trees

被引:0
|
作者
Gittenberger, Bernhard [1 ]
Kraus, Veronika [2 ]
机构
[1] TU Wien, Inst Discrete Math & Geometry, A-1040 Vienna, Austria
[2] UMIT, Inst Bioinformat & Translat Res, A-6020 Hall In Tirol, Austria
关键词
Unlabelled trees; Profile; Nodes of fixed degree; Brownian excursion; Local time; BINARY SEARCH-TREES; RANDOM RECURSIVE TREES; FUNCTIONAL LIMIT-THEOREM; CONTINUUM RANDOM TREE; LARGE PLANAR MAPS; BROWNIAN EXCURSION; LOCAL TIME; DENSITY; FORESTS; HEIGHT;
D O I
10.1016/j.jcta.2012.04.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the profile of random Polya trees of size n when only nodes of degree d are counted in each level. It is shown that, as in the case where all nodes contribute to the profile, the suitably normalized profile process converges weakly to a Brownian excursion local time. Moreover, we investigate the joint distribution of the number of nodes of degrees d(1) and d(2) on the same level of the tree. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1528 / 1557
页数:30
相关论文
共 50 条
  • [31] ON POLYA'S RANDOM WALK CONSTANTS
    Gaunt, Robert e.
    Nadarajah, Saralees
    Pogany, Tibor k.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (08) : 3593 - 3597
  • [32] Parking on trees with a (random) given degree sequence and the frozen configuration model
    Contat, Alice
    ELECTRONIC JOURNAL OF PROBABILITY, 2025, 30
  • [33] Modeling regression error with a mixture of Polya trees
    Hanson, T
    Johnson, WO
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (460) : 1020 - 1033
  • [34] Regression analysis using dependent Polya trees
    Schoergendorfer, Angela
    Branscum, Adam J.
    STATISTICS IN MEDICINE, 2013, 32 (27) : 4679 - 4695
  • [35] Width and mode of the profile for some random trees of logarithmic height
    Devroye, Luc
    Hwang, Hsien-Kuei
    ANNALS OF APPLIED PROBABILITY, 2006, 16 (02): : 886 - 918
  • [36] On Polya-Friedman random walks
    Huillet, Thierry
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (50)
  • [37] Polya urns with immigration at random times
    Pekoz, Erol
    Rollin, Adrian
    Ross, Nathan
    BERNOULLI, 2019, 25 (01) : 189 - 220
  • [38] RANDOM FIELDS WITH POLYA CORRELATION STRUCTURE
    Finlay, Richard
    Seneta, Eugene
    JOURNAL OF APPLIED PROBABILITY, 2014, 51 (04) : 1037 - 1050
  • [39] Supervised learning via smoothed Polya trees
    William Cipolli
    Timothy Hanson
    Advances in Data Analysis and Classification, 2019, 13 : 877 - 904
  • [40] Polya's Random Walk Theorem
    Novak, Jonathan
    AMERICAN MATHEMATICAL MONTHLY, 2014, 121 (08): : 711 - 716