Transmutation of nonlocal scale in infinite derivative field theories

被引:36
|
作者
Buoninfante, Luca [1 ,2 ,3 ]
Ghoshal, Anish [4 ,5 ]
Lambiase, Gaetano [1 ,2 ]
Mazumdar, Anupam [3 ]
机构
[1] Univ Salerno, Dipartimento Fis ER Caianiello, I-84084 Fisciano, SA, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, Gro Collegato Salerno, I-84084 Fisciano, SA, Italy
[3] Univ Groningen, Van Swinderen Inst, NL-9747 AG Groningen, Netherlands
[4] Ist Nazl Fis Nucl, Lab Nazl Frascati, CP 13, I-100044 Frascati, Italy
[5] Univ Roma Tre, Dipartimento Matemat & Fis, I-00146 Rome, Italy
来源
PHYSICAL REVIEW D | 2019年 / 99卷 / 04期
关键词
D O I
10.1103/PhysRevD.99.044032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper we will show an ultraviolet-infrared connection for ghost-free infinite derivative field theories where the Lagrangians are made up of exponentials of entire functions. In particular, for N-point amplitudes a new scale emerges in the infrared from the ultraviolet, i.e., M-eff similar to M-s / N-alpha, where M-s is the fundamental scale beyond the Standard Model and alpha > 0 depends on the specific choice of an entire function and on whether we consider zero or nonzero external momenta. We will illustrate this by first considering a scalar toy model with a cubic interaction and subsequently a scalar toy model inspired by ghost-free infinite derivative theories of gravity. We will briefly discuss some phenomenological implications, such as making the nonlocal region macroscopic in the infrared.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Axiomatic formulations of nonlocal and noncommutative field theories
    M. A. Soloviev
    Theoretical and Mathematical Physics, 2006, 147 : 660 - 669
  • [22] Axiomatic formulations of nonlocal and noncommutative field theories
    Soloviev, M. A.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 147 (02) : 660 - 669
  • [23] CONSTRUCTION OF CONSERVATION EQUATIONS FOR FOR NONLOCAL FIELD THEORIES
    GREGORY, C
    PHYSICAL REVIEW, 1953, 91 (03): : 770 - 770
  • [24] Holographic entanglement entropy of nonlocal field theories
    Pang, Da-Wei
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [25] Low energy signatures of nonlocal field theories
    Belenchia, Alessio
    Benincasa, Dionigi M. T.
    Martin-Martinez, Eduardo
    Saravani, Mehdi
    PHYSICAL REVIEW D, 2016, 94 (06)
  • [26] ACTION PRINCIPLE AND NONLOCAL FIELD-THEORIES
    MARNELIUS, R
    PHYSICAL REVIEW D, 1973, 8 (08) : 2472 - 2495
  • [27] Higher spatial derivative field theories
    Gomes, Pedro R. S.
    Gomes, M.
    PHYSICAL REVIEW D, 2012, 85 (08):
  • [28] Higher derivative fermionic field theories
    Villaseñor, EJS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (29): : 6169 - 6182
  • [29] VARIATIONAL THEOREM FOR VECTOR-MEAN-FIELD THEORIES OF STATISTICAL TRANSMUTATION
    GROS, C
    GIRVIN, SM
    CANRIGHT, GS
    JOHNSON, MD
    PHYSICAL REVIEW B, 1991, 43 (07): : 5883 - 5907
  • [30] DISEASES OF INFINITE-COMPONENT FIELD THEORIES
    ABERS, E
    GRODSKY, IT
    NORTON, RE
    PHYSICAL REVIEW, 1967, 159 (05): : 1222 - &