Fault slip rates and interseismic deformation in the western Transverse Ranges, California

被引:39
|
作者
Marshall, Scott T. [1 ]
Funning, Gareth J. [2 ]
Owen, Susan E. [3 ]
机构
[1] Appalachian State Univ, Dept Geol, Boone, NC 28608 USA
[2] Univ Calif Riverside, Dept Earth Sci, Riverside, CA 92521 USA
[3] CALTECH, Jet Prop Lab, Pasadena, CA USA
关键词
interseismic deformation; Transverse Ranges; strain inversion; mechanical model; dislocation model; fault slip rate; SAN-ANDREAS-FAULT; LOS-ANGELES BASIN; TECTONIC BOUNDARY-CONDITIONS; 1994 NORTHRIDGE EARTHQUAKES; NEOGENE CRUSTAL ROTATIONS; RECENT SURFACE RUPTURE; BLIND-THRUST SYSTEM; OAK-RIDGE FAULT; SOUTHERN-CALIFORNIA; VENTURA BASIN;
D O I
10.1002/jgrb.50312
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
To better constrain fault slip rates and patterns of interseismic deformation in the western Transverse Ranges of southern California, we present results from analysis of GPS and interferometric synthetic aperture radar (InSAR) data and three-dimensional mechanical and kinematic models of active faulting. Anthropogenic motions are detected in several localized zones but do not significantly affect the vast majority of continuous GPS site locations. GPS measures contraction rates across the Ventura Basin of similar to 7 mm/yr oriented west-northwest with rates decreasing to the west and east. The Santa Barbara channel is accommodating similar to 6.5 mm/yr in the east and similar to 2.5 mm/yr in the western portions of N/S contraction. Inversion of horizontal GPS velocities highlights a zone of localized fast contraction rates following the Ventura Basin. Using a mechanical model driven by geodetically calculated strain rates, we show that there are no significant discrepancies between short-term slip rates captured by geodesy and longer-term slip rates measured by geology. Mechanical models reproduce the first-order interseismic velocity and strain rate patterns but fail to reproduce strongly localized contraction in the Ventura Basin due to the inadequate homogeneous elastic properties of the model. Existing two-dimensional models match horizontal rates but predict significant uplift gradients that are not observed in the GPS data. Mechanical models predict zones of fast contraction in the Santa Barbara channel and offshore near Malibu, suggesting that offshore faults represent a significant seismic hazard to the region. Furthermore, many active faults throughout the region may produce little to no interseismic deformation, making accurate seismic hazard assessment challenging.
引用
收藏
页码:4511 / 4534
页数:24
相关论文
共 50 条
  • [21] A MODEL OF INTERSEISMIC FAULT SLIP IN THE PRESENCE OF ASPERITIES
    DRAGONI, M
    GEOPHYSICAL JOURNAL INTERNATIONAL, 1990, 101 (01) : 147 - 156
  • [22] NEOGENE DRAPE FOLDING OVER PRE-NEOGENE FLEXURAL-SLIP MOVEMENTS IN WESTERN TRANSVERSE RANGES, CALIFORNIA
    FRITSCHE, AE
    AAPG BULLETIN, 1985, 69 (04) : 665 - 665
  • [23] SAN-LUIS-OBISPO TRANSFORM-FAULT AND MIDDLE MIOCENE ROTATION OF THE WESTERN TRANSVERSE RANGES, CALIFORNIA
    HALL, CA
    JOURNAL OF GEOPHYSICAL RESEARCH, 1981, 86 (NB2): : 1015 - 1031
  • [24] Implications of distributed crustal deformation for exhumation in a portion of a transpressional plate boundary, Western Transverse Ranges, Southern California
    Meigs, A
    Yule, D
    Blythe, A
    Burbank, D
    QUATERNARY INTERNATIONAL, 2003, 101 : 169 - 177
  • [25] Terrace deformation and slip rates of the Dongbielieke Fault in western Junggar Basin since the late Quaternary
    Yao Y.
    Li S.
    Huang S.-T.
    Jia H.-L.
    Dizhen Dizhi, 2019, 41 (04): : 803 - 820
  • [26] Interseismic Ground Deformation and Fault Slip Rates in the Greater San Francisco Bay Area From Two Decades of Space Geodetic Data
    Xu, Wenbin
    Wu, Songbo
    Materna, Kathryn
    Nadeau, Robert
    Floyd, Michael
    Funning, Gareth
    Chaussard, Estelle
    Johnson, Christopher W.
    Murray, Jessica R.
    Ding, Xiaoli
    Buergmann, Roland
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2018, 123 (09) : 8095 - 8109
  • [28] TIMING AND EXTENT OF NEOGENE TECTONIC ROTATION IN THE WESTERN TRANSVERSE RANGES, CALIFORNIA
    HORNAFIUS, JS
    LUYENDYK, BP
    TERRES, RR
    KAMERLING, MJ
    GEOLOGICAL SOCIETY OF AMERICA BULLETIN, 1986, 97 (12) : 1476 - 1487
  • [29] PALEOGENE DEPOSITIONAL SYSTEMS, WESTERN TRANSVERSE RANGES, SOUTHERN-CALIFORNIA
    DICKINSON, WR
    AAPG BULLETIN-AMERICAN ASSOCIATION OF PETROLEUM GEOLOGISTS, 1980, 64 (05): : 698 - 699
  • [30] Spatial and temporal deformation along the northern San Jacinto fault, southern California: Implications for slip rates
    Kendrick, KJ
    Morton, DM
    Wells, SG
    Simpson, RW
    BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2002, 92 (07) : 2782 - 2802