Weibull and Gamma Renewal Approximation Using Generalized Exponential Functions

被引:13
|
作者
Jin, Tongdan [1 ]
Gonigunta, Lakshmana [2 ]
机构
[1] Texas A&M Int Univ, Dept Math & Phys Sci, Laredo, TX 78041 USA
[2] Texas A&M Int Univ, Dept Management Informat Sci, Laredo, TX 78041 USA
关键词
Gamma distribution; Generalized exponential function; Renewal function; Weibull distribution;
D O I
10.1080/03610910802440327
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
When the inter-renewal time follows the Weibull or the Gamma distribution, the analytical renewal function (RF) usually is not tractable, and approximation method has been used. Instead of approximating RF directly, this article proposes the generalized exponential function to approximate the underlying Weibull or Gamma distributions, and then solves for the RF using Laplace transform. Parameters for generalized exponential function can be obtained by solving a simple optimization problem. The method can obtain accurate RF approximations where the inter-renewals follow Weibull or Gamma distributions, yet analytical RF is still desirable. Comprehensive analysis shows that the new model is mathematically accurate and computationally convenient to approximate the Weibull RF given its shape parameter [1, 5]. For the Gamma distribution, the proposed model can achieve good approximations when the Gamma shape parameter k[1, 10]. These are the typical ranges of shape parameters when modeling the product reliability with increasing failure rate in many practical applications.
引用
收藏
页码:154 / 171
页数:18
相关论文
共 50 条
  • [21] An approximation property of exponential functions
    Jung, S. -M.
    ACTA MATHEMATICA HUNGARICA, 2009, 124 (1-2) : 155 - 163
  • [22] Inference for Weibull generalized exponential distribution based on generalized order statistics
    Gupta, Neetu
    Jamal, Qazi Azhad
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2019, 61 (1-2) : 573 - 592
  • [23] Inference for Weibull generalized exponential distribution based on generalized order statistics
    Neetu Gupta
    Qazi Azhad Jamal
    Journal of Applied Mathematics and Computing, 2019, 61 : 573 - 592
  • [24] Odd Generalized Exponential Flexible Weibull Extension Distribution
    Mustafa, Abdelfattah
    El-Desouky, Beih S.
    AL-Garash, Shamsan
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2018, 17 (01): : 77 - 90
  • [25] Exponentiated Exponential family: An alternative to gamma and Weibull distributions
    Gupta, RD
    Kundu, D
    BIOMETRICAL JOURNAL, 2001, 43 (01) : 117 - 130
  • [26] Odd Generalized Exponential Flexible Weibull Extension Distribution
    Abdelfattah Mustafa
    Beih S. El-Desouky
    Shamsan AL-Garash
    Journal of Statistical Theory and Applications, 2018, 17 (1): : 77 - 90
  • [27] COMPUTATION OF APPARENT RESISTIVITIES USING AN EXPONENTIAL APPROXIMATION OF KERNEL FUNCTIONS
    NIWAS, S
    ISRAIL, M
    GEOPHYSICS, 1986, 51 (08) : 1594 - 1602
  • [28] Approximation of Lightning Current Waveforms Using Complex Exponential Functions
    Yanque Tomasevich, Mirko
    Lima, Antonio C. S.
    Dias, Robson F. S.
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2016, 58 (05) : 1686 - 1689
  • [29] GENERALIZED EXPONENTIAL AND LOGARITHMIC FUNCTIONS
    CLENSHAW, CW
    LOZIER, DW
    OLVER, FWJ
    TURNER, PR
    COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART B, 1986, 12 (5-6): : 1091 - 1101
  • [30] A comparison of the generalized gamma and exponentiated Weibull distributions
    Cox, Christopher
    Matheson, Matthew
    STATISTICS IN MEDICINE, 2014, 33 (21) : 3772 - 3780