A bistable reaction-diffusion system in a stretching flow

被引:0
|
作者
Cox, Stephen M. [1 ]
Gottwald, Georg A.
机构
[1] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
关键词
reaction-diffusion system; chaotic stirring; bistable chemical reaction;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We examine the evolution of a bistable reaction in a one-dimensional stretching flow, as a model for chaotic advection. We derive two reduced systems of ordinary differential equations (ODEs) for the dynamics of the governing advection-reaction-diffusion partial differential equations (PDE). for pulse-like and for plateau-like solutions, based on a non-perturbative approach. This reduction allows us to study the dynamics in two cases: first. close to a saddle-node bifurcation at which a pair of nontrivial steady states are born as the dimensionless reaction rate (Damkohler number) is increased, and, second, for large Damkohler number, far away from the bifurcation. The main aim is to investigate the initial-value problem and to determine when an initial condition subject to chaotic stirring will decay to zero and when it will give rise to a nonzero final state. Comparisons with full PDE simulations show that the reduced pulse model accurately predicts the threshold amplitude for a pulse initial condition to give rise to a nontrivial final steady state, and that the reduced plateau model gives all accurate picture of the dynamics of the system at large Damkohler number. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:307 / 318
页数:12
相关论文
共 50 条
  • [21] Wave-pinning and cell polarity from a bistable reaction-diffusion system
    Mori, Yoichiro
    Jilkine, Alexandra
    Edelstein-Keshet, Leah
    BIOPHYSICAL JOURNAL, 2008, 94 (09) : 3684 - 3697
  • [22] Boundary Effects on the Structural Stability of Stationary Patterns in a Bistable Reaction-Diffusion System
    G. G. Izús
    J. Reyes de Rueda
    C. H. Borzi
    Journal of Statistical Physics, 1998, 90 : 103 - 117
  • [23] Wave fronts in a bistable reaction-diffusion system with density-dependent diffusivity
    Ctro. Atom. Bariloche , Instituto Balseiro , 8400 Bariloche, Río Negro, Argentina
    Physica A: Statistical Mechanics and its Applications, 1996, 226 (3-4): : 310 - 323
  • [24] Dynamics of interface in three-dimensional anisotropic bistable reaction-diffusion system
    He, Zhi Zhu
    Liu, Jing
    ANNALS OF PHYSICS, 2010, 325 (02) : 359 - 366
  • [25] Existence and stability of bistable wavefronts in a nonlocal delayed reaction-diffusion epidemic system
    Li, Kun
    Li, Xiong
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2021, 32 (01) : 146 - 176
  • [26] Numerical approach to transient dynamics of oscillatory pulses in a bistable reaction-diffusion system
    Nagayama, Masaharu
    Ueda, Kei-ichi
    Yadome, Masaaki
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2010, 27 (02) : 295 - 322
  • [27] Wave fronts in a bistable reaction-diffusion system with density-dependent diffusivity
    Strier, DE
    Zanette, DH
    Wio, HS
    PHYSICA A, 1996, 226 (3-4): : 310 - 323
  • [28] STOCHASTIC BIFURCATIONS IN A BISTABLE REACTION-DIFFUSION SYSTEM WITH NEUMANN BOUNDARY-CONDITIONS
    MALCHOW, H
    EBELING, W
    FEISTEL, R
    SCHIMANSKYGEIER, L
    ANNALEN DER PHYSIK, 1983, 40 (2-3) : 151 - 160
  • [29] Transition fronts for periodic bistable reaction-diffusion equations
    Ding, Weiwei
    Hamel, Francois
    Zhao, Xiao-Qiang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 2517 - 2551
  • [30] Transition fronts for periodic bistable reaction-diffusion equations
    Weiwei Ding
    François Hamel
    Xiao-Qiang Zhao
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 2517 - 2551