ON MOMENT CONDITIONS FOR QUASI-MAXIMUM LIKELIHOOD ESTIMATION OF MULTIVARIATE ARCH MODELS

被引:9
|
作者
Avarucci, Marco [1 ]
Beutner, Eric [1 ]
Zaffaroni, Paolo [2 ,3 ]
机构
[1] Maastricht Univ, Maastricht, Netherlands
[2] Imperial Coll London, London SW7 2AZ, England
[3] Univ Roma La Sapienza, Rome, Italy
关键词
ASYMPTOTIC NORMALITY; GARCH PROCESSES; STATIONARITY;
D O I
10.1017/S0266466612000473
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper questions whether it is possible to derive consistency and asymptotic normality of the Gaussian quasi-maximum likelihood estimator (QMLE) for possibly the simplest multivariate GARCH model, namely, the multivariate ARCH(1) model of the Baba, Engle, Kraft, and Kroner form, under weak moment conditions similar to the univariate case. In contrast to the univariate specification, we show that the expectation of the log-likelihood function is unbounded, away from the true parameter value, if (and only if) the observable has unbounded second moment. Despite this nonstandard feature, consistency of the Gaussian QMLE is still warranted. The same moment condition proves to be necessary and sufficient for the stationarity of the score when evaluated at the true parameter value. This explains why high moment conditions, typically bounded sixth moment and above, have been used hitherto in the literature to establish the asymptotic normality of the QMLE in the multivariate framework.
引用
收藏
页码:545 / 566
页数:22
相关论文
共 50 条
  • [31] Penalized quasi-maximum likelihood estimation for extreme value models with application to flood frequency analysis
    Axel Bücher
    Jona Lilienthal
    Paul Kinsvater
    Roland Fried
    Extremes, 2021, 24 : 325 - 348
  • [32] ASYMPTOTIC PROPERTIES OF MAXIMUM AND QUASI-MAXIMUM LIKELIHOOD ESTIMATES
    RUBIN, H
    ANNALS OF MATHEMATICAL STATISTICS, 1947, 18 (02): : 298 - 299
  • [33] Penalized quasi-maximum likelihood estimation for extreme value models with application to flood frequency analysis
    Buecher, Axel
    Lilienthal, Jona
    Kinsvater, Paul
    Fried, Roland
    EXTREMES, 2021, 24 (02) : 325 - 348
  • [34] Quasi-maximum likelihood estimation of long-memory linear processes
    Bardet, Jean-Marc
    MBienkeu, Yves Gael Tchabo
    STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES, 2024, 27 (03) : 457 - 483
  • [35] Adaptive Order Selection in Quasi-Maximum Likelihood-Based IF IF Estimation
    Djukanovic, Slobodan
    Simeunovic, Marko
    2014 22ND TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2014, : 569 - 572
  • [36] Asymptotic Properties of Quasi-Maximum Likelihood Estimates in Generalized Linear Models
    Zhang, Sanguo
    Liao, Yuan
    Ning, Wei
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (24) : 4417 - 4430
  • [37] Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models
    Aknouche A.
    Al-Eid E.
    Demouche N.
    Statistical Inference for Stochastic Processes, 2018, 21 (3) : 485 - 511
  • [38] Nonparametric quasi-maximum likelihood estimation for Gaussian locally stationary processes
    Dahlhaus, Rainer
    Polonik, Wolfgang
    ANNALS OF STATISTICS, 2006, 34 (06): : 2790 - 2824
  • [39] Quasi-Maximum Likelihood Estimators in Generalized Linear Models with Autoregressive Processes
    Hong Chang HU
    Lei SONG
    Acta Mathematica Sinica(English Series), 2014, 30 (12) : 2085 - 2102
  • [40] Quasi-maximum likelihood estimators in generalized linear models with autoregressive processes
    Hong Chang Hu
    Lei Song
    Acta Mathematica Sinica, English Series, 2014, 30 : 2085 - 2102