Adequate subgroups II

被引:6
|
作者
Guralnick, Robert [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
基金
美国国家科学基金会;
关键词
Burnside's lemma; Irreducible representation; p-Solvable group; Galois representations;
D O I
10.1007/s13373-011-0018-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of adequate subgroups was introduced by Thorne (J Inst Math Jussieu. arXiv:1107.5989, to appear). It is a weakening of the notion of big subgroup used by Wiles and Taylor in proving automorphy lifting theorems for certain Galois representations. Using this idea, Thorne was able to prove some new lifting theorems. It was shown in Guralnick et al. (J Inst Math Jussieu. arXiv:1107.5993, to appear) that certain groups were adequate. One of the key aspects was the question of whether the span of the semisimple elements in the group is the full endomorphism ring of an absolutely irreducible module. We show that this is the case in prime characteristic p for p-solvable groups as long the dimension is not divisible by p. We also observe that the condition holds for certain infinite groups. Finally, we present the first examples showing that this condition need not hold and give a negative answer to a question of Richard Taylor.
引用
收藏
页码:193 / 203
页数:11
相关论文
共 50 条
  • [11] On permutable subgroups of finite groups II
    Li, YM
    Heliel, AA
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (09) : 3353 - 3358
  • [12] Left adequate and left Ehresmann monoids II
    Gomes, Gracinda M. S.
    Gould, Victoria
    JOURNAL OF ALGEBRA, 2011, 348 (01) : 171 - 195
  • [13] Subgroups of the split orthogonal group. II
    Vavilov N.A.
    Journal of Mathematical Sciences, 2002, 112 (3) : 4266 - 4276
  • [14] Abelian Sylow subgroups in a finite group, II
    Navarro, Gabriel
    Solomon, Ronald
    Pham Huu Tiep
    JOURNAL OF ALGEBRA, 2015, 421 : 3 - 11
  • [15] Normalizers and self-normalizing subgroups II
    Sirola, Boris
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2011, 9 (06): : 1317 - 1332
  • [16] The depth of subgroups of PSL(2, q) II
    Fritzsche, Tim
    JOURNAL OF ALGEBRA, 2013, 381 : 37 - 53
  • [17] ON INTERSECTIONS SYLOV SUBGROUPS IN FINITE GROUPS, II
    Zenkov, V., I
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 : 42 - 51
  • [18] On right n-Engel subgroups II
    Crosby, Peter G.
    Traustason, Gunnar
    JOURNAL OF ALGEBRA, 2011, 328 (01) : 504 - 510
  • [19] On the II-property of subgroups of finite groups
    Ballester-Bolinches, Adolfo
    Jimenez-Seral, Paz
    Li, Xianhua
    Li, Yangming
    ARCHIV DER MATHEMATIK, 2015, 105 (04) : 301 - 305
  • [20] Power subgroups of some Hecke groups II
    Cangul, I. N.
    Sahin, R.
    Ikikardes, S.
    Koruoglu, Oe.
    HOUSTON JOURNAL OF MATHEMATICS, 2007, 33 (01): : 33 - 42