Information-theoretic sensor planning for large-scale production surveillance via deep reinforcement learning

被引:5
|
作者
Tewari, Ashutosh [1 ]
Liu, Kuang-Hung [1 ]
Papageorgiou, Dimitri [1 ]
机构
[1] ExxonMobil Res & Engn Co, 1545 US 22, Annandale, NJ 08801 USA
关键词
Active sensing; Deep reinforcement learning; Markov decision process; Production surveillance; Sensor resource management;
D O I
10.1016/j.compchemeng.2020.106988
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Production surveillance is the task of monitoring oil and gas production from every well in a hydrocarbon field. Accurate surveillance is a basic necessity for several reasons that include improved resource management, better equipment health monitoring, reduced operational cost, and ultimately optimal hydrocarbon production. A key challenge in this task, especially for large fields with many wells, is the measurement of multiphase fluid flow using a limited number of noisy sensors of varying characteristics. Current surveillance practices are based on fixed utilization schedules of such flow sensors, which rarely change over time. Such a passive mode of sensing is completely agnostic to surveillance performance and thus often fails to achieve a desired accuracy. Here we propose an active surveillance approach, underpinned by the concept of value of information-based sensing. Borrowing some well-known concepts from Markov decision processes, reinforcement learning and artificial neural networks, we demonstrate that a practical active surveillance strategy can be devised, which can not only improve surveillance performance significantly, but also reduce usage of flow sensors. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Multitarget tracking in sensor networks via efficient information-theoretic sensor selection
    Wang, Ping
    Ma, Liang
    Xue, Kai
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2017, 14 (05):
  • [32] Deep Reinforcement Learning for Stabilization of Large-Scale Probabilistic Boolean Networks
    Moschoyiannis, Sotiris
    Chatzaroulas, Evangelos
    Sliogeris, Vytenis
    Wu, Yuhu
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2023, 10 (03): : 1412 - 1423
  • [33] Deep reinforcement learning for scheduling in large-scale networked control systems
    Redder, Adrian
    Ramaswamy, Arunselvan
    Quevedo, Daniel E.
    IFAC PAPERSONLINE, 2019, 52 (20): : 333 - 338
  • [34] Large-scale and adaptive service composition based on deep reinforcement learning
    Liu, Jiang-Wen
    Hu, Li-Qiang
    Cai, Zhao-Quan
    Xing, Li-Ning
    Tan, Xu
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 65
  • [35] Deep Reinforcement Learning for Network Service Recovery in Large-scale Failures
    Akashi, Kazuaki
    Fukuda, Nobukazu
    Kanai, Shunsuke
    Tayama, Kenichi
    2023 19TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT, CNSM, 2023,
  • [36] Large-Scale and Adaptive Service Composition Using Deep Reinforcement Learning
    Wang, Hongbing
    Gu, Mingzhu
    Yu, Qi
    Fei, Huanhuan
    Li, Jiajie
    Tao, Yong
    SERVICE-ORIENTED COMPUTING, ICSOC 2017, 2017, 10601 : 383 - 391
  • [37] Deep Reinforcement Learning-Based Large-Scale Robot Exploration
    Cao, Yuhong
    Zhao, Rui
    Wang, Yizhuo
    Xiang, Bairan
    Sartoretti, Guillaume
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) : 4631 - 4638
  • [38] Multi-Agent Deep Reinforcement Learning for Large-scale Platoon Coordination with Partial Information at Hubs
    Wei, Dixiao
    Yi, Peng
    Lei, Jinlong
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 6242 - 6248
  • [39] Adaptive and large-scale service composition based on deep reinforcement learning
    Wang, Hongbing
    Gu, Mingzhu
    Yu, Qi
    Tao, Yong
    Li, Jiajie
    Fei, Huanhuan
    Yan, Jia
    Zhao, Wei
    Hong, Tianjing
    KNOWLEDGE-BASED SYSTEMS, 2019, 180 : 75 - 90
  • [40] Large-Scale Ad Hoc Networks With Rate-Limited Infrastructure: Information-Theoretic Operating Regimes
    Jeong, Cheol
    Shin, Won-Yong
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 424 - +