P-splines with an l1 penalty for repeated measures

被引:2
|
作者
Segal, Brian D. [1 ]
Elliott, Michael R. [1 ]
Braun, Thomas [1 ]
Jiang, Hui [1 ]
机构
[1] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
来源
ELECTRONIC JOURNAL OF STATISTICS | 2018年 / 12卷 / 02期
关键词
Additive models; semiparametric regression; clustered data; SMOOTHING PARAMETER; VARIABLE SELECTION; MODEL SELECTION; REGRESSION; LIKELIHOOD;
D O I
10.1214/18-EJS1487
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
P-splines are penalized B-splines, in which finite order differences in coefficients are typically penalized with an l(2) norm. P-splines can be used for semiparametric regression and can include random effects to account for within-subject correlations. In addition to l(2) penalties, l(1)-type penalties have been used in nonparametric and semiparametric regression to achieve greater flexibility, such as in locally adaptive regression splines, l(1) trend filtering, and the fused lasso additive model. However, there has been less focus on using l(1) penalties in P-splines, particularly for estimating conditional means. In this paper, we demonstrate the potential benefits of using an l(1) penalty in P-splines with an emphasis on fitting non-smooth functions. We propose an estimation procedure using the alternating direction method of multipliers and cross validation, and provide degrees of freedom and approximate confidence bands based on a ridge approximation to the l(1) penalized fit. We also demonstrate potential uses through simulations and an application to electrodermal activity data collected as part of a stress study.
引用
收藏
页码:3554 / 3600
页数:47
相关论文
共 50 条
  • [31] Adaptive P-Splines for challenging filtering problems in biomechanics
    Pohl, Andrew J.
    Schofield, Matthew R.
    Edwards, W. Brent
    Ferber, Reed
    JOURNAL OF BIOMECHANICS, 2024, 167
  • [32] Variable Selection in Additive Models Using P-Splines
    Antoniadis, Anestis
    Gijbels, Irene
    Verhasselt, Anneleen
    TECHNOMETRICS, 2012, 54 (04) : 425 - 438
  • [33] Multidimensional adaptive P-splines with application to neurons' activity studies
    Xose Rodriguez-Alvarez, Maria
    Durban, Maria
    Eilers, Paul H. C.
    Lee, Dae-Jin
    Gonzalez, Francisco
    BIOMETRICS, 2023, 79 (03) : 1972 - 1985
  • [34] Nonparametric inference in hidden Markov models using P-splines
    Langrock, Roland
    Kneib, Thomas
    Sohn, Alexander
    DeRuiter, Stacy L.
    BIOMETRICS, 2015, 71 (02) : 520 - 528
  • [35] P-splines quantile regression estimation in varying coefficient models
    Andriyana, Y.
    Gijbels, I.
    Verhasselt, A.
    TEST, 2014, 23 (01) : 153 - 194
  • [36] MortalitySmooth: An R Package for Smoothing Poisson Counts with P-Splines
    Camarda, Carlo G.
    JOURNAL OF STATISTICAL SOFTWARE, 2012, 50 (01): : 1 - 24
  • [37] P-splines quantile regression estimation in varying coefficient models
    Y. Andriyana
    I. Gijbels
    A. Verhasselt
    TEST, 2014, 23 : 153 - 194
  • [38] Penalized complexity priors for degrees of freedom in Bayesian P-splines
    Ventrucci, Massimo .
    Rue, Havard
    STATISTICAL MODELLING, 2016, 16 (06) : 429 - 453
  • [39] Correcting for spatial heterogeneity in plant breeding experiments with P-splines
    Xose Rodriguez-Alvarez, Maria
    Boer, Martin P.
    van Eeuwijk, Fred A.
    Eilers, Paul H. C.
    SPATIAL STATISTICS, 2018, 23 : 52 - 71
  • [40] Derivative curve estimation in longitudinal studies using P-splines
    Hernandez, Maria Alejandra
    Lee, Dae-Jin
    Rodriguez-Alvarez, Maria Xose
    Durban, Maria
    STATISTICAL MODELLING, 2023, 23 (5-6) : 424 - 440