Central extensions of Lax operator algebras

被引:9
|
作者
Schlichenmaier, M. [1 ]
Sheinman, O. K. [2 ]
机构
[1] Univ Luxembourg, Luxembourg, Luxembourg
[2] Russian Acad Sci, VA Steklov Math Inst, Moscow 117901, Russia
关键词
D O I
10.1070/RM2008v063n04ABEH004550
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Lax operator algebras were introduced by Krichever and Shein-man as a further development of Krichever's theory of Lax operators oil algebraic curves. These are almost-graded Lie algebras of current type. In this paper local cocycles and associated almost-graded central extensions of Lax operator algebras are classified. It is shown that in the case when the corresponding finite-dimensional Lie algebra, is simple the two-cohomology space is one-dimensional. An important role is Played by the action of the Lie algebra of meromorphic vector fields on the Lax operator algebra via suitable covariant derivatives.
引用
收藏
页码:727 / 766
页数:40
相关论文
共 50 条
  • [31] MIRROR EXTENSIONS OF RATIONAL VERTEX OPERATOR ALGEBRAS
    Lin, Xingjun
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (06) : 3821 - 3840
  • [32] A Lax type operator for quantum finite W-algebras
    De Sole, Alberto
    Kac, Victor G.
    Valeri, Daniele
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (05): : 4617 - 4657
  • [33] Lax Operator Algebras and Applications to τ-Symmetries for Multilayer Integrable Couplings
    Li, Chun-Xia
    Ma, Wen-Xiu
    Shen, Shou-Feng
    SYMMETRY-BASEL, 2022, 14 (06):
  • [34] A Lax type operator for quantum finite W-algebras
    Alberto De Sole
    Victor G. Kac
    Daniele Valeri
    Selecta Mathematica, 2018, 24 : 4617 - 4657
  • [35] LAX REPRESENTATIONS AND LAX OPERATOR-ALGEBRAS OF ISOSPECTRAL AND NONISOSPECTRAL HIERARCHIES OF EVOLUTION-EQUATIONS
    MA, WX
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (07) : 2464 - 2476
  • [36] Central extensions of filiform Zinbiel algebras
    Camacho, Luisa M.
    Karimjanov, Iqboljon
    Kaygorodov, Ivan
    Khudoyberdiyev, Abror
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (08): : 1479 - 1495
  • [37] Central extensions of Stephenson's algebras
    Cassidy, T
    COMMUNICATIONS IN ALGEBRA, 2003, 31 (04) : 1615 - 1632
  • [38] ON UNIVERSAL CENTRAL EXTENSIONS OF LEIBNIZ ALGEBRAS
    Casas, J. M.
    Corral, N.
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 2104 - 2120
  • [39] TENSORIAL EXTENSIONS OF CENTRAL SIMPLE ALGEBRAS
    STEWART, I
    JOURNAL OF ALGEBRA, 1973, 25 (01) : 1 - 14
  • [40] CENTRAL EXTENSIONS OF LIE-ALGEBRAS
    KASSEL, C
    LODAY, JL
    ANNALES DE L INSTITUT FOURIER, 1982, 32 (04) : 119 - 142