Lid-Driven Cavity Flow Using a Discrete Velocity Method for Solving the Boltzmann Equation

被引:0
|
作者
Sekaran, Aarthi [1 ]
Varghese, Philip [1 ,2 ]
Estes, Samuel [1 ]
Goldstein, David [2 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Aerosp Engn & Engn Mech, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
VARIANCE REDUCTION; MONTE-CARLO;
D O I
10.1063/1.4967549
中图分类号
O59 [应用物理学];
学科分类号
摘要
We extend the discrete velocity method for solving the Boltzmann equation previously used for one-dimensional problems to two spatial dimensions. The collision integral is computed using collisions between velocity classes selected randomly using a Monte Carlo method. Arbitrary post-collision velocities are mapped back onto the grid using a projection scheme which conserves mass, momentum, and energy. In addition, a variance reduction scheme is implemented to decrease noise and further reduce computational effort. The convection part of the equation is computed using first order upwind finite differences. We apply this discrete velocity scheme to the 2D lid-driven square cavity flow problem with Ar as the fluid medium and explore the effect of the additional flexibility available in this quasi-particle based stochastic method on the accuracy and noise level in the solutions obtained.
引用
收藏
页数:8
相关论文
共 50 条
  • [11] Lid-driven cavity flow using dual reciprocity
    Muzik, Juraj
    Bulko, Roman
    DYNAMICS OF CIVIL ENGINEERING AND TRANSPORT STRUCTURES AND WIND ENGINEERING - DYN-WIND'2020, 2020, 313
  • [12] Lattice Boltzmann simulation of nanofluid in lid-driven cavity
    Nemati, H.
    Farhadi, M.
    Sedighi, K.
    Fattahi, E.
    Darzi, A. A. R.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2010, 37 (10) : 1528 - 1534
  • [13] Lattice Boltzmann simulation of lid-driven swirling flow in confined cylindrical cavity
    Bhaumik, S. K.
    Lakshmisha, K. N.
    COMPUTERS & FLUIDS, 2007, 36 (07) : 1163 - 1173
  • [14] A FINE GRID SOLUTION FOR A LID-DRIVEN CAVITY FLOW USING MULTIGRID METHOD
    Kumar, D. Santhosh
    Kumar, K. Suresh
    Das, Manab Kumar
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2009, 3 (03) : 336 - 354
  • [15] Modelling of generalized Newtonian lid-driven cavity flow using an SPH method
    Rafiee, Ashkan
    ANZIAM JOURNAL, 2008, 49 (03): : 411 - 422
  • [16] Simulation of fluid flow in a lid-driven cavity with different wave lengths corrugated walls using Lattice Boltzmann method
    Fatima, Nahid
    Rajan, Isac
    Perumal, D. Arumuga
    Sasithradevi, A.
    Ahmed, Shaimaa A. A.
    Gorji, M. R.
    Ahmad, Zubair
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2023, 144
  • [17] Two-Sided Lid-Driven Cavity Flow at Different Speed Ratio by Lattice Boltzmann Method
    Sidik, Nor Azwadi Che
    Razali, Siti Aisyah
    Mechanical and Materials Engineering, 2014, 554 : 675 - 679
  • [18] Lid-driven cavity flow of sediment suspension
    Chuong Nguyen Hoang-Trong
    Cuong Mai Bui
    Thinh Xuan Ho
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2021, 85 : 312 - 321
  • [19] Global flow instability in a lid-driven cavity
    Boppana, V. B. L.
    Gajjar, J. S. B.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2010, 62 (08) : 827 - 853
  • [20] CHARACTERISTICS OF LID-DRIVEN OSCILLATORY CAVITY FLOW
    KAJIUCHI, T
    SHIRAGAMI, N
    OHTA, T
    KAGAKU KOGAKU RONBUNSHU, 1986, 12 (04) : 486 - 488