A prediction model of short-term ionospheric foF2 based on AdaBoost

被引:41
|
作者
Zhao, Xiukuan [1 ,2 ]
Ning, Baiqi [1 ,2 ]
Liu, Libo [1 ,2 ]
Song, Gangbing [3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Ionospher Environm, Beijing 100029, Peoples R China
[2] Chinese Acad Sci, Inst Geol & Geophys, Beijing Natl Observ Space Environm, Beijing 100029, Peoples R China
[3] Univ Houston, Dept Mech Engn, Houston, TX 77204 USA
[4] Dalian Univ Technol, Sch Civil Engn, Dalian, Liaoning, Peoples R China
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
AdaBoost; Ionosphere; foF2; Short-term prediction; NEURAL-NETWORKS; CRITICAL FREQUENCY; F2; LAYER; F(O)F(2); STORM;
D O I
10.1016/j.asr.2013.12.001
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
In this paper, the AdaBoost-BP algorithm is used to construct a new model to predict the critical frequency of the ionospheric F2-layer (foF2) one hour ahead. Different indices were used to characterize ionospheric diurnal and seasonal variations and their dependence on solar and geomagnetic activity. These indices, together with the current observed foF2 value, were input into the prediction model and the foF2 value at one hour ahead was output. We analyzed twenty-two years' foF2 data from nine ionosonde stations in the East-Asian sector in this work. The first eleven years' data were used as a training dataset and the second eleven years' data were used as a testing dataset. The results show that the performance of AdaBoost-BP is better than those of BP Neural Network (BPNN), Support Vector Regression (SVR) and the IRI model. For example, the AdaBoost-BP prediction absolute error of foF2 at Irkutsk station (a middle latitude station) is 0.32 MHz, which is better than 0.34 MHz from BPNN, 0.35 MHz from SVR and also significantly outperforms the IRI model whose absolute error is 0.64 MHz. Meanwhile, AdaBoost-BP prediction absolute error at Taipei station from the low latitude is 0.78 MHz, which is better than 0.81 MHz from BPNN, 0.81 MHz from SVR and 1.37 MHz from the IRI model. Finally, the variety characteristics of the AdaBoost-BP prediction error along with seasonal variation, solar activity and latitude variation were also discussed in the paper. (C) 2013 COSPAR. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:387 / 394
页数:8
相关论文
共 50 条