Hollow core-shell structured CNT/PAN@Co9S8@C coaxial nanocables as high-performance anode material for lithium ion batteries

被引:18
|
作者
Gao, Junting [1 ]
Wang, Xingchao [1 ]
Huang, Yudai [1 ]
Meng, Zhaoting [1 ]
Sun, Ying [1 ]
Zhang, Yue [1 ]
Guo, Yong [1 ]
Tang, Xincun [2 ]
机构
[1] Xinjiang Univ, Coll Chem, Inst Appl Chem, Key Lab Adv Funct Mat,Minist Educ,Key Lab Energy, Urumqi 830046, Xinjiang, Peoples R China
[2] Cent South Univ, Sch Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hollow core-shell structured CNT/PAN@Co9S8@C; Coaxial nanocables; High-performance; Anode material; Lithium ion batteries; HIGH-CAPACITY; ELECTRODE MATERIALS; MESOPOROUS CO9S8; ENERGY-STORAGE; NANOPARTICLES; COMPOSITE; GRAPHENE; NANOSHEETS; NANOMATERIALS; CATHODE;
D O I
10.1016/j.jallcom.2020.157354
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Transition metal sulfides, which possesses high ionic conductivity and high theoretical capacity, have attracted tremendous interest in the field of lithium ion batteries (LIBs). However, their application suffers from severe volume changes and structure deterioration during charge-discharge process. Herein, hollow core-shell structured CNT/PAN@Co9S8@C coaxial nanocables were synthesized. The unique structure can provide more channels for Li+ ions/electrons diffusion and alleviate volume swelling during charge/discharge process. As a result, CNT/PAN@Co9S8@C exhibits good cycling performance (>700 mAh g(-1) at 0.1 A g(-1)) and rate capability (455 mAh g(-1) at 2 A g(-1) after 100 cycles). The impressive results demonstrate CNT/PAN@Co9S8@C is a promising candidate for anode material in high-performance LIBs. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Core-shell structured Fe2O3@C hollow nanospheres as a high-performance negative material for potassium-ion batteries
    Yu, Maoting
    Li, Chengping
    Yu, Hongrui
    Zheng, Zhaohui
    Wang, Jinsong
    Zhang, Zhengfu
    Zhang, Kai
    Zhang, Yingjie
    Dong, Peng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 689
  • [22] Peanut-like MnO@C core-shell composites as anode electrodes for high-performance lithium ion batteries
    Wang, Shengbin
    Ren, Yanbiao
    Liu, Guanrao
    Xing, Yalan
    Zhang, Shichao
    NANOSCALE, 2014, 6 (07) : 3508 - 3512
  • [23] Core-shell transition metal disulfide grafted carbon matrix composite as an anode material for high-performance lithium-ion batteries
    Pantrangi, Manasa
    Ashalley, Eric
    Hafiz, Wail
    Hadi, Mohammed Kamal
    Xiao, Hu
    Younis, Umer
    Singh, Nisha
    Zhang, Yue
    Krishna, Gopi
    Ran, Fen
    Pan, Liang
    Wang, Zhiming
    JOURNAL OF ENERGY STORAGE, 2025, 114
  • [24] A Core-Shell Fe/Fe2O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries
    Na, Zhaolin
    Huang, Gang
    Liang, Fei
    Yin, Dongming
    Wang, Limin
    CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (34) : 12081 - 12087
  • [25] Synthesis of Si/TiO2 core-shell nanoparticles as anode material for high performance lithium ion batteries
    Li, Jun
    Wang, Yao
    Huang, Zongyu
    Huang, Kai
    Qi, Xiang
    Zhong, Jianxin
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2016, 27 (12) : 12813 - 12819
  • [26] Synthesis of Hollow Carbon Microspheres with Tunable Shell Numbers for High-Performance Anode Material in Lithium-Ion Batteries
    Zeng, Guilin
    Zhou, Wei
    Zheng, Jialing
    Fan, Zhanhua
    Chen, Han
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2020, 20 (08) : 4899 - 4906
  • [27] Core-Shell Nanoparticles with a Redox Polymer Core and a Silica Porous Shell as High-Performance Cathode Material for Lithium-Ion Batteries
    Jia, He
    Friebe, Christian
    Schubert, Ulrich S.
    Zhang, Xiaozhe
    Quan, Ting
    Lu, Yan
    Gohy, Jean-Francois
    ENERGY TECHNOLOGY, 2020, 8 (03)
  • [28] Necklace-like CNT-Co9S8@C-CNT for high-performance zinc-ion batteries
    Zhou, Yongsheng
    Zhu, Yingchun
    Xu, Bingshe
    JOURNAL OF MATERIALS CHEMISTRY A, 2025,
  • [29] High storage performance of core-shell Si@C nanoparticles as lithium ion battery anode material
    Zhao, Guangyu
    Zhang, Li
    Meng, Yufeng
    Zhang, Naiqing
    Sun, Kening
    MATERIALS LETTERS, 2013, 96 : 170 - 173
  • [30] Hollow structured Sn-Co nanospheres by galvanic replacement reaction as high-performance anode for lithium ion batteries
    Jiang, Anni
    Fan, Xin
    Zhu, Jin
    Ma, Daqian
    Xu, Xinhua
    IONICS, 2015, 21 (08) : 2137 - 2147