Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction

被引:215
|
作者
Abedi, Ali [1 ,2 ]
Maitra, Neepa T. [3 ,4 ]
Gross, E. K. U. [1 ,2 ]
机构
[1] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany
[2] CUNY Hunter Coll, European Theoret Spect Facil ETSF, New York, NY 10065 USA
[3] CUNY Hunter Coll, Dept Phys & Astron, New York, NY 10065 USA
[4] CUNY, New York, NY 10065 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2012年 / 137卷 / 22期
基金
美国国家科学基金会;
关键词
QUANTUM-CLASSICAL DYNAMICS; INTENSE LASER FIELDS; GEOMETRIC-PHASE; MULTIPHOTON IONIZATION; HARMONIC-GENERATION; ENHANCED IONIZATION; DIATOMIC-MOLECULES; DISSOCIATION; SYSTEMS; ENERGY;
D O I
10.1063/1.4745836
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It was recently shown [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 ( 2010)] that the complete wavefunction for a system of electrons and nuclei evolving in a time-dependent external potential can be exactly factorized into an electronic wavefunction and a nuclear wavefunction. The concepts of an exact time-dependent potential energy surface (TDPES) and exact time-dependent vector potential emerge naturally from the formalism. Here, we present a detailed description of the formalism, including a full derivation of the equations that the electronic and nuclear wavefunctions satisfy. We demonstrate the relationship of this exact factorization to the traditional Born-Oppenheimer expansion. A one-dimensional model of the H-2(+) molecule in a laser field shows the usefulness of the exact TDPES in interpreting coupled electron-nuclear dynamics: we show how features of its structure indicate the mechanism of dissociation. We compare the exact TDPES with potential energy surfaces from the time-dependent Hartree-approach, and also compare traditional Ehrenfest dynamics with Ehrenfest dynamics on the exact TDPES. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745836]
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Degree of electron-nuclear entanglement in molecular states
    Sjöqvist, E
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2000, 77 (02) : 526 - 533
  • [42] Correlated three-dimensional electron-nuclear motion: Adiabatic dynamics vs passage of conical intersections
    Schaupp, Thomas
    Engel, Volker
    JOURNAL OF CHEMICAL PHYSICS, 2022, 156 (07):
  • [43] The multi-configuration electron-nuclear dynamics method
    Nest, M.
    CHEMICAL PHYSICS LETTERS, 2009, 472 (4-6) : 171 - 174
  • [44] Nonlinear spin dynamics in ferromagnets with electron-nuclear coupling
    Yukalov, VI
    Cottam, MG
    Singh, MR
    PHYSICAL REVIEW B, 1999, 60 (02): : 1227 - 1237
  • [45] Factorized Electron-Nuclear Dynamics with an Effective Complex Potential
    Garashchuk, Sophya
    Stetzler, Julian
    Rassolov, Vitaly
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (05) : 1393 - 1408
  • [46] NONLINEAR DYNAMICS OF ELECTRON-NUCLEAR SPIN SYSTEM OF ANTIFERROMAGNET
    BOGOLYUBOV, VN
    KOLGANOV, VA
    FIZIKA TVERDOGO TELA, 1976, 18 (11): : 3348 - 3353
  • [47] Coupled electron-nuclear wavepacket dynamics in potassium dimers
    Braun, Hendrike
    Bayer, Tim
    Sarpe, Cristian
    Siemering, Robert
    de Vivie-Riedle, Regina
    Baumert, Thomas
    Wollenhaupt, Matthias
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2014, 47 (12)
  • [48] Electron-nuclear correlated multiphoton-route to Rydberg fragments of molecules
    Zhang, Wenbin
    Gong, Xiaochun
    Li, Hui
    Lu, Peifen
    Sun, Fenghao
    Ji, Qinying
    Lin, Kang
    Ma, Junyang
    Li, Hanxiao
    Qiang, Junjie
    He, Feng
    Wu, Jian
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [49] HYPERFINE-CORRELATED ELECTRON-NUCLEAR DOUBLE-RESONANCE SPECTROSCOPY
    JESCHKE, G
    SCHWEIGER, A
    CHEMICAL PHYSICS LETTERS, 1995, 246 (4-5) : 431 - 438
  • [50] Electron-nuclear correlated multiphoton-route to Rydberg fragments of molecules
    Wenbin Zhang
    Xiaochun Gong
    Hui Li
    Peifen Lu
    Fenghao Sun
    Qinying Ji
    Kang Lin
    Junyang Ma
    Hanxiao Li
    Junjie Qiang
    Feng He
    Jian Wu
    Nature Communications, 10