Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction

被引:215
|
作者
Abedi, Ali [1 ,2 ]
Maitra, Neepa T. [3 ,4 ]
Gross, E. K. U. [1 ,2 ]
机构
[1] Max Planck Inst Mikrostrukturphys, D-06120 Halle, Germany
[2] CUNY Hunter Coll, European Theoret Spect Facil ETSF, New York, NY 10065 USA
[3] CUNY Hunter Coll, Dept Phys & Astron, New York, NY 10065 USA
[4] CUNY, New York, NY 10065 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2012年 / 137卷 / 22期
基金
美国国家科学基金会;
关键词
QUANTUM-CLASSICAL DYNAMICS; INTENSE LASER FIELDS; GEOMETRIC-PHASE; MULTIPHOTON IONIZATION; HARMONIC-GENERATION; ENHANCED IONIZATION; DIATOMIC-MOLECULES; DISSOCIATION; SYSTEMS; ENERGY;
D O I
10.1063/1.4745836
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
It was recently shown [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 ( 2010)] that the complete wavefunction for a system of electrons and nuclei evolving in a time-dependent external potential can be exactly factorized into an electronic wavefunction and a nuclear wavefunction. The concepts of an exact time-dependent potential energy surface (TDPES) and exact time-dependent vector potential emerge naturally from the formalism. Here, we present a detailed description of the formalism, including a full derivation of the equations that the electronic and nuclear wavefunctions satisfy. We demonstrate the relationship of this exact factorization to the traditional Born-Oppenheimer expansion. A one-dimensional model of the H-2(+) molecule in a laser field shows the usefulness of the exact TDPES in interpreting coupled electron-nuclear dynamics: we show how features of its structure indicate the mechanism of dissociation. We compare the exact TDPES with potential energy surfaces from the time-dependent Hartree-approach, and also compare traditional Ehrenfest dynamics with Ehrenfest dynamics on the exact TDPES. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4745836]
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Response to "Comment on 'Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction'" [J. Chem. Phys. 139, 087101 (2013)]
    Abedi, Ali
    Maitra, Neepa T.
    Gross, E. K. U.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (08):
  • [2] Comment on "Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction" [J. Chem. Phys. 137, 22A530 (2012)]
    Alonso, J. L.
    Clemente-Gallardo, J.
    Echenique-Robba, P.
    Jover-Galtier, J. A.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (08):
  • [3] Molecular geometric phase from the exact electron-nuclear factorization
    Requist, Ryan
    Tandetzky, Falk
    Gross, E. K. U.
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [4] Real-Space and Real-Time Propagation for Correlated Electron-Nuclear Dynamics Based on Exact Factorization
    Han, Daeho
    Ha, Jong-Kwon
    Min, Seung Kyu
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (08) : 2186 - 2197
  • [5] Emergence of the Molecular Geometric Phase from Exact Electron-Nuclear Dynamics
    Martinazzo, Rocco
    Burghardt, Irene
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024,
  • [6] Exact factorization of the photon-electron-nuclear wavefunction: Formulation and coupled-trajectory dynamics
    Gil, Eduarda Sangiogo
    Lauvergnat, David
    Agostini, Federica
    JOURNAL OF CHEMICAL PHYSICS, 2024, 161 (08):
  • [7] Bohmian mechanics in the exact factorization of electron-nuclear wave functions
    Suzuki, Yasumitsu
    Watanabe, Kazuyuki
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [8] The adiabatic limit of the exact factorization of the electron-nuclear wave function
    Eich, F. G.
    Agostini, Federica
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (05):
  • [9] Electron-nuclear entanglement in the time-dependent molecular wavefunction
    Agostini, Federica
    Gross, E. K. U.
    Curchod, Basile F. E.
    COMPUTATIONAL AND THEORETICAL CHEMISTRY, 2019, 1151 : 99 - 106
  • [10] Exact Factorization of the Time-Dependent Electron-Nuclear Wave Function
    Abedi, Ali
    Maitra, Neepa T.
    Gross, E. K. U.
    PHYSICAL REVIEW LETTERS, 2010, 105 (12)