共 50 条
Microbial desalination cells for energy production and desalination
被引:204
|作者:
Kim, Younggy
[1
]
Logan, Bruce E.
[1
]
机构:
[1] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
来源:
关键词:
Bioelectrochemical systems;
Sustainable desalination;
Renewable energy;
Exoelectrogenic microorganisms;
Microbial fuel cells;
Electrodialysis;
SIMULTANEOUS WATER DESALINATION;
MEMBRANE CONTACTOR PROCESSES;
FUEL-CELLS;
WASTE-WATER;
POWER-GENERATION;
ELECTRICITY-GENERATION;
SEAWATER DESALINATION;
HYDROGEN-PRODUCTION;
ELECTROLYSIS CELLS;
REVERSE-OSMOSIS;
D O I:
10.1016/j.desal.2012.07.022
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
Microbial desalination cells (MDCs) are a new, energy-sustainable method for using organic matter in wastewater as the energy source for desalination. The electric potential gradient created by exoelectrogenic bacteria desalinates water by driving ion transport through a series of ion-exchange membranes (IEMs). The specific MDC architecture and current conditions substantially affect the amount of wastewater needed to desalinate water. Other baseline conditions have varied among studies making comparisons of the effectiveness of different designs problematic. The extent of desalination is affected by water transport through IEMs by both osmosis and electroosmosis. Various methods have been used, such as electrolyte recirculation, to avoid low pH that can inhibit exoelectrogenic activity. The highest current density in an MDC to date is 8.4 A/m(2), which is lower than that produced in other bioelectrochemical systems. This implies that there is a room for substantial improvement in desalination rates and overall performance. We review here the state of the art in MDC design and performance, safety issues related to the use of MDCs with wastewater, and areas that need to be examined to achieve practical application of this new technology. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:122 / 130
页数:9
相关论文