Central role of Southern Hemisphere winds and eddies in modulating the oceanic uptake of anthropogenic carbon

被引:42
|
作者
Mignone, BK [1 ]
Gnanadesikan, A
Sarmiento, JL
Slater, RD
机构
[1] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
[2] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA
[3] Princeton Univ, Atmospher & Ocean Sci Program, Princeton, NJ 08544 USA
关键词
D O I
10.1029/2005GL024464
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Although the world ocean is known to be a major sink of anthropogenic carbon dioxide, the exact processes governing the magnitude and regional distribution of carbon uptake remain poorly understood. Here we show that Southern Hemisphere winds, by altering the Ekman volume transport out of the Southern Ocean, strongly control the regional distribution of anthropogenic uptake in an ocean general circulation model, while winds and isopycnal thickness mixing together, by altering the volume of light, actively-ventilated ocean water, exert strong control over the absolute magnitude of anthropogenic uptake. These results are provocative in suggesting that climate-mediated changes in pycnocline volume may ultimately control changes in future carbon uptake.
引用
收藏
页数:5
相关论文
共 30 条
  • [21] The role of the Indian Ocean Dipole in modulating the austral spring ENSO teleconnection to the Southern Hemisphere
    Andrian, Luciano Gustavo
    Osman, Marisol
    Vera, Carolina Susana
    WEATHER AND CLIMATE DYNAMICS, 2024, 5 (04): : 1505 - 1522
  • [22] Role of stratospheric dynamics in the ozone-carbon connection in the Southern Hemisphere
    Cagnazzo, Chiara
    Manzini, Elisa
    Fogli, Pier Giuseppe
    Vichi, Marcello
    Davini, Paolo
    CLIMATE DYNAMICS, 2013, 41 (11-12) : 3039 - 3054
  • [23] Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models
    Frolicher, Thomas L.
    Sarmiento, Jorge L.
    Paynter, David J.
    Dunne, John P.
    Krasting, John P.
    Winton, Michael
    JOURNAL OF CLIMATE, 2015, 28 (02) : 862 - 886
  • [24] Role of regression model selection and station distribution on the estimation of oceanic anthropogenic carbon change by eMLR
    Plancherel, Y.
    Rodgers, K. B.
    Key, R. M.
    Jacobson, A. R.
    Sarmiento, J. L.
    BIOGEOSCIENCES, 2013, 10 (07) : 4801 - 4831
  • [25] The role of the Southern Hemisphere semiannual oscillation in the development of a precursor to central and eastern Pacific Southern Oscillation warm events
    Meehl, Gerald A.
    van Loon, Harry
    Arblaster, Julie M.
    GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (13) : 6959 - 6965
  • [26] Recent change in the oceanic uptake rate of anthropogenic carbon in the North Pacific subpolar region determined by using a carbon-13 time series
    Watanabe, Yutaka W.
    Chiba, Takeshi
    Tanaka, Takayuki
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2011, 116
  • [27] On the role of heat fluxes in the uptake of anthropogenic carbon in the North Atlantic -: art. no. 1138
    Völker, C
    Wallace, DWR
    Wolf-Gladrow, DA
    GLOBAL BIOGEOCHEMICAL CYCLES, 2002, 16 (04)
  • [28] Atmospheric Δ14C in the northern and southern hemispheres over the past two millennia: Role of production rate, southern hemisphere westerly winds and ocean circulation changes
    Goosse, Hugues
    Brovkin, Victor
    Meissner, Katrin J.
    Menviel, Laurie
    Mouchet, Anne
    Muscheler, Raimund
    Nilsson, Andreas
    QUATERNARY SCIENCE REVIEWS, 2024, 326
  • [29] Potential effect of pesticides currently used in salmon farming on photo and chemoautotrophic carbon uptake in central - southern Chile
    Rain-Franco, Angel
    Rojas, Claudia
    Fernandez, Camila
    AQUACULTURE, 2018, 486 : 271 - 284
  • [30] On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century
    Hauck, J.
    Voelker, C.
    Wolf-Gladrow, D. A.
    Laufkoetter, C.
    Vogt, M.
    Aumont, O.
    Bopp, L.
    Buitenhuis, E. T.
    Doney, S. C.
    Dunne, J.
    Gruber, N.
    Hashioka, T.
    John, J.
    Le Quere, C.
    Lima, I. D.
    Nakano, H.
    Seferian, R.
    Totterdell, I.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2015, 29 (09) : 1451 - 1470