A new approach for the numerical solution of diffusion equations with variable and degenerate mobility

被引:20
|
作者
Ceniceros, Hector D. [1 ]
Garcia-Cervera, Carlos J. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Semi-implicit method; Cahn-Hilliard equation; Allen-Cahn equation; Degenerate mobility; CAHN-HILLIARD EQUATION; PHASE-FIELD MODELS; VISCOELASTIC FLUIDS; NONUNIFORM SYSTEM; COMPLEX FLUIDS; FREE ENERGY; SIMULATIONS; SCHEMES; MOTION;
D O I
10.1016/j.jcp.2013.03.036
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a novel approach for the numerical integration of diffusion-type equations with variable and degenerate mobility or diffusion coefficient. Our focus is the Cahn-Hilliard equation which plays a prominent role in phase field models of fluids and soft materials but the methodology has a more general applicability. The central idea is a split method with a linearly implicit component and an analytic step to integrate out the variable mobility. The proposed method is robust, free of high order stability constraints, and its cost is comparable to that of solving the linear Heat Equation with the backward Euler Method. Moreover, by design, the numerical solution is guaranteed to be strictly bounded by the stable, constant states. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] A DIFFERENCE METHOD FOR NUMERICAL-SOLUTION OF DEGENERATE HYPERBOLIC-EQUATIONS
    SEMERDJIEVA, RI
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1988, 41 (05): : 31 - 34
  • [32] NUMERICAL-SOLUTION OF DIFFUSION-CONVECTION EQUATIONS
    BLOTTNER, FG
    COMPUTERS & FLUIDS, 1978, 6 (01) : 15 - 24
  • [33] Numerical Solution of Partial Integrodifferential Equations of Diffusion Type
    Aziz, Imran
    Khan, Imran
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [34] The influence of numerical diffusion on the solution of the radiative transfer equations
    Steinacker, J
    Hackert, R
    Steinacker, A
    Bacmann, A
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2002, 73 (06): : 557 - 569
  • [35] Numerical Solution to Anomalous Diffusion Equations for Levy Walks
    Saenko, Viacheslav V.
    Kovalnogov, Vladislav N.
    Fedorov, Ruslan V.
    Chamchiyan, Yuri E.
    MATHEMATICS, 2021, 9 (24)
  • [36] Numerical Solution of Reaction–Diffusion Equations with Convergence Analysis
    M. Heidari
    M. Ghovatmand
    M. H. Noori Skandari
    D. Baleanu
    Journal of Nonlinear Mathematical Physics, 2023, 30 : 384 - 399
  • [37] Numerical solution of the equations of salt diffusion into the potato tissues
    Dehkordi, Behrouz Mosayebi
    Hashemi, Frazaneh
    Mostafazadeh, Ramin
    World Academy of Science, Engineering and Technology, 2010, 38 : 136 - 139
  • [38] New Grid Approach for Solution of Boundary Problems for Convection-Diffusion Equations
    Polyakov, Sergey V.
    Karamzin, Yuri N.
    Kudryashova, Tatiana A.
    Podryga, Viktoriia O.
    NUMERICAL ANALYSIS AND ITS APPLICATIONS (NAA 2016), 2017, 10187 : 550 - 558
  • [39] On numerical methods and error estimates for degenerate fractional convection-diffusion equations
    Cifani, Simone
    Jakobsen, Espen R.
    NUMERISCHE MATHEMATIK, 2014, 127 (03) : 447 - 483
  • [40] A compact adaptive approach for degenerate singular reaction-diffusion equations
    Ge, Yongbin
    Cai, Zhiquan
    Sheng, Qin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) : 1166 - 1187