Multi-scale CNN for Multi-sensor Feature Fusion in Helical Gear Fault Detection

被引:18
|
作者
Li, Tianfu [1 ]
Zhao, Zhibin [1 ]
Sun, Chuang [1 ]
Yan, Ruqiang [1 ]
Chen, Xuefeng [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, Xian 710049, Shaanxi, Peoples R China
关键词
helical gear; fault detectiom; multi-scale multi-sensor feature fusion; convolutional neural network;
D O I
10.1016/j.promfg.2020.07.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fault detection and diagnosis of helical gears under high speed and heavy load conditions are rarely researched comparing with spur gears under light load and low speed conditions. It is a fact that the working conditions of helical gears are very complicated, thus multiple sensors mounted on its different locations can provide complementary information on fault detection and diagnosis. On this basis, a multi-scale multi-sensor feature fusion convolutional neural network (MSMFCNN) is derived, and it operates information fusion on both data level and feature level. MSMFCNN contains three parts, including a conventional one-dimensional CNN part, a multi-scale multi-sensor feature fusion part, and an output part. To better understand this network, theoretical foundation of MSMFCNN is given. Moreover, in order to demonstrate effectiveness of the proposed method, experiments are carried out on a parallel shaft gearbox test rig on which multiple acceleration sensors are mounted for data acquisition. The experimental results show that MSMFCNN can fully utilize multi-sensor information and get a high accuracy on helical gear fault detection and can also converge faster than standard CNN. (C) 2020 The Authors. Published by Elsevier B. V.
引用
收藏
页码:89 / 93
页数:5
相关论文
共 50 条
  • [41] Rotating machinery fault classification method using multi-sensor feature extraction and fusion
    Zhang Q.
    Wen C.
    International Journal of Performability Engineering, 2020, 16 (04) : 577 - 586
  • [42] Multi-scale Feature Learning Network for Bearing fault Diagnosis with Information Fusion
    Luo, Shuyang
    Zhou, Qi
    2024 10TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTIC, ICCAR 2024, 2024, : 191 - 196
  • [43] Bearing fault diagnosis based on DNN using multi-scale feature fusion
    Zhou, Funa
    Zhang, Zhiqiang
    Chen, Danmin
    2020 35TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2020, : 150 - 155
  • [44] Peach Flower Density Detection Based on an Improved CNN Incorporating Attention Mechanism and Multi-Scale Feature Fusion
    Tao, Kun
    Wang, Aichen
    Shen, Yidie
    Lu, Zemin
    Peng, Futian
    Wei, Xinhua
    HORTICULTURAE, 2022, 8 (10)
  • [45] Accurate Multi-Scale Feature Fusion CNN for Time Series Classification in Smart Factory
    Shao, Xiaorui
    Kim, Chang Soo
    Kim, Dae Geun
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 65 (01): : 543 - 561
  • [46] A Rotating Machinery Fault Diagnosis Method Based on Multi-Sensor Fusion and ECA-CNN
    Wang, Hongxing
    Zhu, Hua
    Li, Huafeng
    IEEE ACCESS, 2023, 11 : 106443 - 106455
  • [47] Text Detection Algorithm Based on Multi-Scale Attention Feature Fusion
    She, Xiangyang
    Liu, Zhe
    Dong, Lihong
    Computer Engineering and Applications, 2024, 60 (01) : 198 - 206
  • [48] Multi-Scale Feature Attention Fusion for Image Splicing Forgery Detection
    Liang, Enji
    Zhang, Kuiyuan
    Hua, Zhongyun
    Jia, Xiaohua
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2025, 21 (01)
  • [49] MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK
    Guan, Wenjie
    Zou, YueXian
    Zhou, Xiaoqun
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2596 - 2600
  • [50] Small Object Detection using Multi-scale Feature Fusion and Attention
    Liu, Baokai
    Du, Shiqiang
    Li, Jiacheng
    Wang, Jianhua
    Liu, Wenjie
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7246 - 7251