Anomalous diffusion and fractional diffusion equation: anisotropic media and external forces

被引:23
|
作者
de Andrade, MR [1 ]
Lenzi, EK [1 ]
Evangelista, LR [1 ]
Mendes, RS [1 ]
Malacarne, LC [1 ]
机构
[1] Univ Estadual Maringa, Dept Fis, BR-87020900 Maringa, Parana, Brazil
关键词
D O I
10.1016/j.physleta.2005.07.090
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyze a fractional diffusion equation by taking an anisotropic case into account. In our analysis, we also consider a spatial time dependent diffusion coefficient and the presence of external forces in the system. For the cases analyzed here, we obtain exact solutions and show that the solutions have an anomalous spreading. In addition, we discuss a rich class of diffusive processes, including normal and anomalous ones described by this equation. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:160 / 169
页数:10
相关论文
共 50 条
  • [41] THE FRACTIONAL DIFFUSION EQUATION
    WYSS, W
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (11) : 2782 - 2785
  • [42] An anomalous fractional diffusion operator
    Zheng, Xiangcheng
    Ervin, V. J.
    Wang, Hong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2025,
  • [43] Fractional diffusion equations involving external forces in the higher dimensional case
    Zou, F
    Ren, FY
    Qiu, WY
    CHAOS SOLITONS & FRACTALS, 2004, 21 (03) : 679 - 687
  • [44] The determination of the diffusion kernel on fractals and fractional diffusion equation for transport phenomena in random media
    Ren, FY
    Liang, JR
    Wang, XT
    PHYSICS LETTERS A, 1999, 252 (3-4) : 141 - 150
  • [45] Diffusion in a heterogeneous system, fractional dynamics and anomalous diffusion
    E. K. Lenzi
    M. K. Lenzi
    R. S. Zola
    The European Physical Journal Plus, 134
  • [46] Diffusion in a heterogeneous system, fractional dynamics and anomalous diffusion
    Lenzi, E. K.
    Lenzi, M. K.
    Zola, R. S.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (10):
  • [47] An anomalous non-self-similar infiltration and fractional diffusion equation
    Gerasimov, D. N.
    Kondratieva, V. A.
    Sinkevich, O. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2010, 239 (16) : 1593 - 1597
  • [48] Anomalous diffusion: Fractional Fokker-Planck equation and its solutions
    Lenzi, EK
    Mendes, RS
    Fa, KS
    Malacarne, LC
    da Silva, LR
    JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (05) : 2179 - 2185
  • [49] Matrix transfer technique for anomalous diffusion equation involving fractional Laplacian
    Zheng, Minling
    Jin, Zhengmeng
    Liu, Fawang
    Vo Anh
    APPLIED NUMERICAL MATHEMATICS, 2022, 172 : 242 - 258
  • [50] FRACTIONAL DERIVATIVE ANOMALOUS DIFFUSION EQUATION MODELING PRIME NUMBER DISTRIBUTION
    Chen, Wen
    Liang, Yingjie
    Hu, Shuai
    Sun, Hongguang
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 789 - 798