Quantum Heisenberg antiferromagnets in a uniform magnetic field: Nonanalytic magnetic field dependence of the magnon spectrum

被引:27
|
作者
Kreisel, Andreas [1 ]
Sauli, Francesca [1 ]
Hasselmann, Nils [1 ,2 ]
Kopietz, Peter [1 ]
机构
[1] Goethe Univ Frankfurt, Inst Theoret Phys, D-60438 Frankfurt, Germany
[2] Univ Brasilia, Int Ctr Condensed Matter Phys, BR-70910900 Brasilia, DF, Brazil
来源
PHYSICAL REVIEW B | 2008年 / 78卷 / 03期
关键词
D O I
10.1103/PhysRevB.78.035127
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We reexamine the 1/S correction to the self-energy of the gapless magnon of a D-dimensional quantum Heisenberg antiferromagnet in a uniform magnetic field h using a hybrid approach between 1/S expansion and nonlinear sigma model, where the Holstein-Primakoff bosons are expressed in terms of Hermitian field operators representing the uniform and the staggered components of the spin operators [N. Hasselmann and P. Kopietz, Europhys. Lett. 74, 1067 (2006)]. By integrating over the field associated with the uniform spin fluctuations, we obtain the effective action for the staggered spin fluctuations on the lattice, which contains fluctuations on all length scales and does not have the cutoff ambiguities of the nonlinear sigma model. We show that in dimensions D <= 3, the magnetic-field dependence of the spin-wave velocity (c) over tilde_(h) is nonanalytic in h(2), with (c) over tilde_(h)-(c) over tilde_(0)proportional to h(2) ln vertical bar h vertical bar in D=3, and (c) over tilde_(h)-(c) over tilde (0)proportional to vertical bar h vertical bar in D=2. The frequency-dependent magnon self-energy is found to exhibit an even more singular magnetic-field dependence, implying a strong momentum dependence of the quasiparticle residue of the gapless magnon. We also discuss the problem of spontaneous magnon decay and show that in D>1 dimensions, the damping of magnons with momentum k is proportional to vertical bar k vertical bar(2D-1) if spontaneous magnon decay is kinematically allowed.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Fractal spectrum of periodic quantum systems in a magnetic field
    Geyler, VA
    Popov, IY
    Popov, AV
    Ovechkina, AA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (1-3) : 281 - 288
  • [42] Heisenberg necklace model in a magnetic field
    Tsvelik, A. M.
    Zaliznyak, I. A.
    PHYSICAL REVIEW B, 2016, 94 (07)
  • [43] Heisenberg Model in a Rotating Magnetic Field
    LIN Qiong-Gui Department of Physics
    Communications in Theoretical Physics, 2005, 43 (04) : 621 - 626
  • [44] The anisotropic Heisenberg ferromagnet in a magnetic field
    Hu, Ai-Yuan
    Chen, Yuan
    Peng, Li-Jun
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2007, 313 (02) : 366 - 372
  • [45] Magnetic Field Effects on Quantum Correlations for the XXX Heisenberg Spin Chain
    Jami, Safa
    Haqpanah, Zohreh
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 72 (07) : 743 - 747
  • [46] Magnetic Field Effects on Quantum Correlations for the XXX Heisenberg Spin Chain
    Safa Jami
    Zohreh Haqpanah
    Journal of the Korean Physical Society, 2018, 72 : 743 - 747
  • [47] Magnetic and quantum disordered phases in triangular-lattice Heisenberg antiferromagnets
    Manuel, LO
    Ceccatto, HA
    PHYSICAL REVIEW B, 1999, 60 (13): : 9489 - 9493
  • [48] Magnetic field effects on the NiO magnon spectra
    Milano, J.
    Grimsditch, M.
    PHYSICAL REVIEW B, 2010, 81 (09):
  • [49] Quantum speed limit for a relativistic electron in a uniform magnetic field
    Villamizar, D. V.
    Duzzioni, E. I.
    PHYSICAL REVIEW A, 2015, 92 (04):
  • [50] Magnon polarons induced by a magnetic field gradient
    Vidal-Silva, N.
    Aguilera, E.
    Roldan-Molina, A.
    Duine, R. A.
    Nunez, A. S.
    PHYSICAL REVIEW B, 2020, 102 (10)