Topical Influential User Analysis with Relationship Strength Estimation in Twitter

被引:14
|
作者
Liu, Xinyue [1 ]
Shen, Hua [2 ]
Ma, Fenglong [1 ]
Liang, Wenxin [1 ]
机构
[1] Dalian Univ Technol, Sch Software, Dalian, Peoples R China
[2] Anshan Normal Univ, Anshan, Peoples R China
关键词
Topical influential user analysis; Relationship strength estimation; Twitter;
D O I
10.1109/ICDMW.2014.11
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Topical Influential User Analysis (TIUA) is an important technique in Twitter. Existing techniques neglected relationship strength between users, which is a crucial aspect for TIUA. For modeling relationship strength, interaction frequency between users has not been considered in previous works. In this paper, we firstly introduce a poisson regression-based latent variable model to estimate relationship strength by utilizing interaction frequency. We then propose a novel TIUA framework which uses not only retweeting relationship but also relationship strength. Experimental results show that the proposed TIUA algorithm can greatly improve the precision and relevance on finding topical influential users in Twitter.
引用
收藏
页码:1012 / 1019
页数:8
相关论文
共 50 条
  • [31] ORIGINS OF THE #PRIMAVERAVALENCIANA MOBILIZATIONS. AN ANALYSIS OF THE MOST INFLUENTIAL SOCIAL ACTORS ON TWITTER
    Pecourt Gracia, Juan
    Villar Aguiles, Alicia
    ATHENEA DIGITAL, 2018, 18 (02):
  • [32] Relationship Strength Estimation for Social Media Using Folksonomy and Network Analysis
    Yanagimoto, Hidekazu
    Yoshioka, Michifumi
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [33] Method to Predict Bursty Hot Events on Twitter Based on User Relationship Network
    Nie, Xichan
    Zhang, Wanshan
    Zhang, Yang
    Yu, Dunhui
    IEEE ACCESS, 2020, 8 : 44031 - 44040
  • [34] Identifying Influential Nodes in Complex Networks Based on Information Entropy and Relationship Strength
    Xi, Ying
    Cui, Xiaohui
    ENTROPY, 2023, 25 (05)
  • [35] User relationship strength modeling for friend recommendation on Instagram
    Guo, Dongyan
    Xu, Jingsong
    Zhang, Jian
    Xu, Min
    Cui, Ying
    He, Xiangjian
    NEUROCOMPUTING, 2017, 239 : 9 - 18
  • [36] Twitter user growth analysis based on diversities in posting activities
    Yamamoto S.
    Wakabayashi K.
    Satoh T.
    Nozaki Y.
    Kando N.
    Yamamoto, Shuhei (yamahei@ce.slis.tsukuba.ac.jp), 1600, Emerald Group Holdings Ltd. (13): : 370 - 386
  • [37] User-Generated Travel Warnings on Twitter: An Explorative Analysis
    Nutzergenerierte Reisewarnungen auf Twitter: Eine Explorative Analyse
    1600, Walter de Gruyter GmbH (13):
  • [38] User-Weighted Sentiment Analysis for Financial Community on Twitter
    Eliacik, Alpaslan Burak
    Erdogan, Nadia
    2015 11TH INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION TECHNOLOGY (IIT), 2015, : 46 - 51
  • [39] Malicious Behaviour Analysis on Twitter Through the Lens of User Interest
    Alghamdi, Bandar
    Xu, Yue
    Watson, Jason
    DATA MINING, AUSDM 2017, 2018, 845 : 233 - 249
  • [40] User-Level Twitter Sentiment Analysis with a Hybrid Approach
    Er, Meng Joo
    Liu, Fan
    Wang, Ning
    Zhang, Yong
    Pratama, Mahardhika
    ADVANCES IN NEURAL NETWORKS - ISNN 2016, 2016, 9719 : 426 - 433