Periodic orbits near onset of chaos in plane Couette flow

被引:95
|
作者
Kreilos, Tobias [1 ]
Eckhardt, Bruno [1 ,2 ]
机构
[1] Univ Marburg, Fachbereich Phys, D-35032 Marburg, Germany
[2] Delft Univ Technol, JM Burgersctr, NL-2628 CD Delft, Netherlands
关键词
NEAR-WALL TURBULENCE; PIPE-FLOW; DYNAMICAL-SYSTEMS; TRANSITION; BOUNDARY; ATTRACTORS; STABILITY; MOTIONS; CYCLES; TERMS;
D O I
10.1063/1.4757227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We track the secondary bifurcations of coherent states in plane Couette flow and show that they undergo a periodic doubling cascade that ends with a crisis bifurcation. We introduce a symbolic dynamics for the orbits and show that the ones that exist fall into the universal sequence described by Metropolis, Stein and Stein for unimodal maps. The periodic orbits cover much of the turbulent dynamics in that their temporal evolution overlaps with turbulent motions when projected onto a plane spanned by energy production and dissipation. [http://dx.doi.org/10.1063/1.4757227]
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Periodic Orbits near Equilibria
    Barreira, Luis
    Llibre, Jaume
    Valls, Claudia
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2010, 63 (09) : 1225 - 1236
  • [22] UNIFORM ASYMPTOTIC SOLUTION FOR LINEARIZED NEAR-CONTINUUM PLANE COUETTE FLOW
    MIURA, RM
    SCRIPTA MATHEMATICA, 1973, 29 (1-2): : 77 - 97
  • [23] Periodic orbits in Hamiltonian chaos of the annular billiard
    Gouesbet, G
    Meunier-Guttin-Cluzel, S
    Grehan, G
    PHYSICAL REVIEW E, 2002, 65 (01): : 1 - 016212
  • [24] Exact periodic orbits and chaos in polynomial potentials
    Caranicolas, ND
    ASTROPHYSICS AND SPACE SCIENCE, 2000, 271 (04) : 341 - 352
  • [25] ON CONTROL OF CHAOS - HIGHER PERIODIC-ORBITS
    PASKOTA, M
    MEES, AI
    TEO, KL
    DYNAMICS AND CONTROL, 1995, 5 (04) : 365 - 387
  • [26] Chaos, order statistics and unstable periodic orbits
    Valsakumar, MC
    Satyanarayana, SVM
    Kanmani, S
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (40): : 6939 - 6947
  • [27] Bifurcation of periodic orbits and chaos in duffing equation
    Cai M.-X.
    Yang J.-P.
    Acta Mathematicae Applicatae Sinica, 2006, 22 (3) : 495 - 508
  • [28] Reducing or enhancing chaos using periodic orbits
    Bachelard, R.
    Chandre, C.
    Leoncini, X.
    CHAOS, 2006, 16 (02)
  • [29] Unstable periodic orbits and noise in chaos computing
    Kia, Behnam
    Dari, Anna
    Ditto, William L.
    Spano, Mark L.
    CHAOS, 2011, 21 (04)
  • [30] Exact Periodic Orbits and Chaos in Polynomial Potentials
    N.D. Caranicolas
    Astrophysics and Space Science, 2000, 271 : 341 - 352