On the choice of test statistic for conditional moment inequalities

被引:2
|
作者
Armstrong, Timothy B. [1 ]
机构
[1] Yale Univ, New Haven, CT 06520 USA
基金
美国国家科学基金会;
关键词
INFERENCE; BOUNDS;
D O I
10.1016/j.jeconom.2017.10.007
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper derives asymptotic approximations to the power of Cramer-von Mises (CvM) style tests for inference on a finite dimensional parameter defined by conditional moment inequalities in the case where the parameter is set identified. Combined with power results for Kolmogorov-Smirnov (KS) tests, these results can be used to choose the optimal test statistic, weighting function and, for tests based on kernel estimates, kernel bandwidth. The results show that, in the setting considered here, KS tests are preferred to CvM tests, and that a truncated variance weighting is preferred to bounded weightings. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:241 / 255
页数:15
相关论文
共 50 条