Evaluation of an auto-segmentation software for definition of organs at risk in radiotherapy

被引:0
|
作者
Lablanca, M. D. Herraiz [1 ]
Paul, S. [1 ]
Chiesa, M. [1 ]
Grosser, K. H. [1 ]
Harms, W. [1 ]
机构
[1] St Clara Hosp, Radioonkol, Basel, Switzerland
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PO-1006
引用
收藏
页码:S554 / S554
页数:1
相关论文
共 50 条
  • [31] Evaluation of atlas-based auto-segmentation software in prostate cancer patients
    Greenham, Stuart
    Dean, Jenna
    Fu, Cheuk Kuen Kenneth
    Goman, Joanne
    Mulligan, Jeremy
    Tune, Deanna
    Sampson, David
    Westhuyzen, Justin
    Mckay, Michael
    JOURNAL OF MEDICAL RADIATION SCIENCES, 2014, 61 (03): : 151 - 158
  • [32] Harnessing uncertainty in radiotherapy auto-segmentation quality assurance
    Wahid, Kareem A.
    Sahlsten, Jaakko
    Jaskari, Joel
    Dohopolski, Michael J.
    Kaski, Kimmo
    He, Renjie
    Glerean, Enrico
    Kann, Benjamin H.
    Makitie, Antti
    Fuller, Clifton D.
    Naser, Mohamed A.
    Fuentes, David
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2024, 29
  • [33] Validation of Deep Learning-based Auto-Segmentation for Organs at Risk and Gross Tumor Volumes in Lung Stereotactic Body Radiotherapy
    Wong, J.
    Huang, V.
    Giambattista, J. A.
    Teke, T.
    Atrchian, S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2019, 105 (01): : E140 - E140
  • [34] Systematic Study of Patient-Specific Organs at Risk Auto-Segmentation on Daily kVCT Images for Adaptive Head and Neck Radiotherapy
    Chen, Y.
    Yu, L.
    Zhou, Y.
    Shen, L.
    Kovalchuk, N.
    Xing, L.
    Han, B.
    Gensheimer, M. F.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2022, 114 (03): : E590 - E590
  • [35] Dose-volume-based evaluation of convolutional neural network-based auto-segmentation of thoracic organs at risk
    Johnston, Noemie
    De Rycke, Jeffrey
    Lievens, Yolande
    van Eijkeren, Marc
    Aelterman, Jan
    Vandersmissen, Eva
    Ponte, Stephan
    Vanderstraeten, Barbara
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2022, 23 : 109 - 117
  • [36] Evaluation of CBCT-based auto-segmentation for online adaptive radiotherapy in cervical cancer
    Shelley, C.
    Bolt, M.
    Hollingdale, R.
    South, C.
    Adams, E.
    Stewart, A.
    RADIOTHERAPY AND ONCOLOGY, 2021, 161 : S1079 - S1080
  • [37] Evaluation of Deep Learning-Based Auto-Segmentation of Target Volume and Organs-at-Risk in Breast Cancer Patients
    Chung, S. Y.
    Chang, J. S.
    Chang, Y.
    Choi, B. S.
    Chun, J.
    Kim, J. S.
    Kim, Y. B.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2020, 108 (03): : E779 - E779
  • [38] Clinical Implementation and Evaluation of Auto-Segmentation Tools for Multi-Site Contouring in Radiotherapy
    Heilemann, Gerd
    Buschmann, Martin
    Lechner, Wolfgang
    Dick, Vincent
    Eckert, Franziska
    Heilmann, Martin
    Herrmann, Harald
    Moll, Matthias
    Knoth, Johannes
    Konrad, Stefan
    Simek, Inga-Malin
    Thiele, Christopher
    Zaharie, Alexandru
    Georg, Dietmar
    Widder, Joachim
    Trnkova, Petra
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2023, 28
  • [39] Improved accuracy of auto-segmentation of organs at risk in radiotherapy planning for nasopharyngeal carcinoma based on fully convolutional neural network deep learning
    Peng, Yinglin
    Liu, Yimei
    Shen, Guanzhu
    Chen, Zijie
    Chen, Meining
    Miao, Jingjing
    Zhao, Chong
    Deng, Jincheng
    Qi, Zhenyu
    Deng, Xiaowu
    ORAL ONCOLOGY, 2023, 136
  • [40] Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy
    Elguindi, Sharif
    Zelefsky, Michael J.
    Jiang, Jue
    Veeraraghavan, Harini
    Deasy, Joseph O.
    Hunt, Margie A.
    Tyagi, Neelam
    PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2019, 12 : 80 - 86