Generalized radix representations and dynamical systems.: I

被引:58
|
作者
Akiyama, S [1 ]
Borbély, T
Brunotte, H
Pethö, A
Thuswaldner, JM
机构
[1] Niigata Univ, Fac Sci, Dept Math, Ikarashi 2-8050, Niigata 9502181, Japan
[2] Natl Instruments Europe KFT, H-4031 Debrecen, Hungary
[3] Univ Debrecen, Dept Comp Sci, H-4010 Debrecen, Hungary
[4] Univ Min & Met Leoben, Dept Math & Stat, A-8700 Leoben, Austria
基金
奥地利科学基金会; 匈牙利科学研究基金会;
关键词
beta expansion; canonical number system; periodic point; contracting polynomial; Pisot number;
D O I
10.1007/s10474-005-0221-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We are concerned with families of dynamical systems which are related to generalized radix representations. The properties of these dynamical systems lead to new results on the characterization of bases of Pisot number Systems as well as canonical number systems.
引用
收藏
页码:207 / 238
页数:32
相关论文
共 50 条
  • [21] SPECIAL ISSUE ON THEORETICAL AND COMPUTATIONAL ASPECTS OF DYNAMICAL SYSTEMS. PART I PREFACE
    Celledoni, Elena
    Ebrahimi-Fard, Kurusch
    Zanna, Antonella
    JOURNAL OF COMPUTATIONAL DYNAMICS, 2024, 11 (04): : I - III
  • [22] FREE VIBRATION OF COMBINED DYNAMICAL SYSTEMS.
    Nicholson, James W.
    Bergman, Lawrence A.
    Journal of Engineering Mechanics, 1986, 112 (01) : 1 - 13
  • [23] CHAOS IN DYNAMICAL SYSTEMS. - OTT,E
    GLENDINNING, P
    NATURE, 1994, 368 (6466) : 26 - 26
  • [24] INTERPOLATED CELL MAPPING OF DYNAMICAL SYSTEMS.
    Tongue, B.H.
    Gu, K.
    Journal of Applied Mechanics, Transactions ASME, 1988, 55 (02): : 461 - 466
  • [25] FREE VIBRATION OF COMBINED DYNAMICAL SYSTEMS.
    Nicholson, James W.
    Bergman, Lawrence A.
    T.&A.M. Report (University of Illinois at Urbana - Champaign, Department of Theoretical and Applie, 1984, (467):
  • [26] ON THE ROBUSTNESS OF MISMATCHED UNCERTAIN DYNAMICAL SYSTEMS.
    Chen, Y.H.
    Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 1987, 190 (01): : 29 - 35
  • [27] LOCALIZATION OF DYNAMICAL CHAOS IN QUANTUM SYSTEMS.
    Chirikov, B.V.
    Shepelyanskii, D.L.
    Radiophysics and quantum electronics, 1986, 29 (09) : 787 - 794
  • [28] Ši’lnikov Chaos in the Generalized Lorenz Canonical Form of Dynamical Systems
    Tianshou Zhou
    Guanrong Chen
    Sergej ČelikovskÝ
    Nonlinear Dynamics, 2005, 39 : 319 - 334
  • [29] Analysis of mixed mode polymerization systems. I. Generalized modeling approach
    Giannakitsas, I
    Teymour, F
    JOURNAL OF APPLIED POLYMER SCIENCE, 2002, 85 (03) : 571 - 594
  • [30] Generalized propagation of light through optical systems. I. Mathematical basics
    Tessmer, Manuel
    Gross, Herbert
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2015, 32 (02) : 258 - 266