Asymptotic analysis of unsteady neutron transport equation

被引:4
|
作者
Wu, Lei [1 ]
机构
[1] Lehigh Univ, Dept Math, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
diffusive boundary; geometric correction; L-2m - L-infinity framework; GEOMETRIC CORRECTION; DIFFUSIVE LIMIT; STEADY;
D O I
10.1002/mma.5531
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the unsteady neutron transport equation with diffusive boundary condition in 2D convex domains. We establish the diffusive limit with both initial layer and boundary layer corrections. The major difficulty is the lack of regularity in the boundary layer with geometric correction. Our contribution relies on a detailed analysis of asymptotic expansions inspired by the compatibility condition and an intricate L-2m - L-infinity framework, which yields stronger remainder estimates.
引用
收藏
页码:2544 / 2585
页数:42
相关论文
共 50 条
  • [21] ASYMPTOTIC SOLUTIONS IN NEUTRON-TRANSPORT THEORY
    BOFFI, VC
    MOLINARI, VG
    SPIGA, G
    NUCLEAR SCIENCE AND ENGINEERING, 1977, 62 (02) : 332 - 339
  • [22] VARIATIONAL DETERMINATION OF THE NEUTRON INTEGRAL TRANSPORT-EQUATION EIGENVALUES USING SPACE ASYMPTOTIC TRIAL FUNCTIONS
    COLOMBO, V
    RAVETTO, P
    SUMINI, M
    JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 77 (02) : 318 - 329
  • [23] On the boundary conditions for the neutron transport equation
    P. Saracco
    N. Chentre
    S. Dulla
    P. Ravetto
    The European Physical Journal Plus, 135
  • [24] A QUANTUM CORRECTION OF NEUTRON TRANSPORT EQUATION
    TAKAHASH.H
    TRANSACTIONS OF THE AMERICAN NUCLEAR SOCIETY, 1970, 13 (02): : 729 - &
  • [25] NUMERICAL SOLUTION OF NEUTRON TRANSPORT EQUATION
    BOWDEN, RL
    BULLARD, AG
    JOURNAL OF NUCLEAR ENERGY, 1969, 23 (11-1): : 655 - &
  • [26] QUANTUM CORRECTIONS TO NEUTRON TRANSPORT EQUATION
    DIANA, E
    SCOTTI, A
    PHYSICAL REVIEW, 1969, 177 (01): : 330 - +
  • [27] On the boundary conditions for the neutron transport equation
    Saracco, P.
    Chentre, N.
    Dulla, S.
    Ravetto, P.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (02):
  • [28] REMARK TO SOLUTION OF NEUTRON TRANSPORT EQUATION
    DEPKEN, S
    NUOVO CIMENTO, 1964, 31 (01): : 7 - +
  • [29] DIRECT INTEGRATION OF THE NEUTRON TRANSPORT EQUATION
    HELLER, J
    KELLER, H
    PHYSICAL REVIEW, 1954, 93 (04): : 932 - 932
  • [30] DECOMPOSITION METHOD FOR NEUTRON TRANSPORT EQUATION
    Cristescu, Ion Aurel
    ROMANIAN JOURNAL OF PHYSICS, 2015, 60 (1-2): : 179 - 189