A quasi-optimal error estimate for a discrete singularly perturbed approximation to the prescribed curvature problem

被引:8
|
作者
Paolini, M
机构
关键词
D O I
10.1090/S0025-5718-97-00771-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Solutions of the so-called prescribed curvature problem min(A subset of or equal to Omega) P-Omega(A) - integral(A)g(x), g being the curvature field, are approximated via a singularly perturbed elliptic PDE of bistable type. For nondegenerate relative minimizers A subset of subset of Omega we prove an O(epsilon(2) \log epsilon\(2)) error estimate (where epsilon stands for the perturbation parameter), and show that this estimate is quasi-optimal. The proof is based on the construction of accurate barriers suggested by formal asymptotics This analysis is next extended to a finite element discretization of the PDE to prove the same error estimate for discrete minima.
引用
收藏
页码:45 / 67
页数:23
相关论文
共 50 条
  • [31] Quasi-Optimal Control In A Switching Polynomial Tracking Problem
    Leslaw, Socha
    Ewelina, Seroka
    4TH POLISH CONGRESS OF MECHANICS AND THE 23RD INTERNATIONAL CONFERENCE ON COMPUTER METHODS IN MECHANICS, 2020, 2239
  • [32] Pointwise error estimate of the LDG method for 2D singularly perturbed reaction-diffusion problem
    Wang, Xuesong
    Jiang, Shan
    Cheng, Yao
    NUMERICAL ALGORITHMS, 2024,
  • [33] Generation of quasi-optimal meshes based on a posteriori error estimates
    Agouzal, Abdellatif
    Lipnikov, Konstantin
    Vassilevski, Yuri
    PROCEEDINGS OF THE 16TH INTERNATIONAL MESHING ROUNDTABLE, 2008, : 139 - +
  • [34] Quasi-optimal model reduction of discrete-time systems
    Brehonnet, P
    Derrien, A
    Vilbe, P
    Calvez, LC
    ELECTRONICS LETTERS, 1996, 32 (16) : 1521 - 1522
  • [35] Quasi-optimal model reduction of discrete-time systems
    Universite de Bretagne Occidentale, , Brest, France
    Electron Lett, 16 (1521-1522):
  • [36] An occupational measure solution to a singularly perturbed optimal control problem
    Artstein, Z
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 623 - 642
  • [37] Internal layer solution of singularly perturbed optimal control problem
    Wu Li-Meng
    Ni Ming-Kang
    ACTA PHYSICA SINICA, 2012, 61 (08)
  • [39] Asymptotic Solution of a Singularly Perturbed Optimal Problem with Integral Constraint
    Thi Hoai Nguyen
    Journal of Optimization Theory and Applications, 2021, 190 : 931 - 950
  • [40] An improved pointwise error estimate of the LDG method for 1-d singularly perturbed reaction-diffusion problem
    Wang, Xuesong
    Cheng, Yao
    Applied Numerical Mathematics, 2024, 196 : 199 - 217