Global Spectral Filter Memory Network for Video Object Segmentation

被引:20
|
作者
Liu, Yong [1 ,2 ]
Yu, Ran [1 ]
Wang, Jiahao [1 ]
Zhao, Xinyuan [3 ]
Wang, Yitong [2 ]
Tang, Yansong [1 ]
Yang, Yujiu [1 ]
机构
[1] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Beijing, Peoples R China
[2] ByteDance Inc, Beijing, Peoples R China
[3] Northwestern Univ, Evanston, IL USA
来源
基金
中国国家自然科学基金;
关键词
Video object segmentation; Spectral domain;
D O I
10.1007/978-3-031-19818-2_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper studies semi-supervised video object segmentation through boosting intra-frame interaction. Recent memory network-based methods focus on exploiting inter-frame temporal reference while paying little attention to intra-frame spatial dependency. Specifically, these segmentation model tends to be susceptible to interference from unrelated nontarget objects in a certain frame. To this end, we propose Global Spectral Filter Memory network (GSFM), which improves intraframe interaction through learning long-term spatial dependencies in the spectral domain. The key components of GSFM is 2D (inverse) discrete Fourier transform for spatial information mixing. Besides, we empirically find low frequency feature should be enhanced in encoder (backbone) while high frequency for decoder (segmentation head). We attribute this to semantic information extracting role for encoder and fine-grained details highlighting role for decoder. Thus, Low (High) Frequency Module is proposed to fit this circumstance. Extensive experiments on the popular DAVIS and YouTube-VOS benchmarks demonstrate that GSFM noticeably outperforms the baseline method and achieves state-of-the-art performance. Besides, extensive analysis shows that the proposed modules are reasonable and of great generalization ability.
引用
收藏
页码:648 / 665
页数:18
相关论文
共 50 条
  • [41] Flexible Global Motion Estimation Oriented to Video Object Segmentation
    Zhang, Huisheng
    Liu, Xinyu
    Guo, Yanrong
    Rao, Jie
    Li, Qiaoliang
    Wang, Xiaoxuan
    PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), 2012, : 777 - 782
  • [42] A Simple and Powerful Global Optimization for Unsupervised Video Object Segmentation
    Ponimatkin, Georgy
    Samet, Nermin
    Xiao, Yang
    Du, Yuming
    Marlet, Renaud
    Lepetit, Vincent
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5881 - 5892
  • [43] SSFNET-VOS: Semantic segmentation and fusion network for video object segmentation
    Sharma, Vipal Kumar
    Mir, Roohie Naaz
    PATTERN RECOGNITION LETTERS, 2020, 140 : 49 - 58
  • [44] Kernel based local matching network for video object segmentation
    Wang, Guoqiang
    Li, Lan
    Zhu, Min
    Zhao, Rui
    Zhang, Xiang
    MACHINE VISION AND APPLICATIONS, 2024, 35 (03)
  • [45] Multi-Attention Network for Unsupervised Video Object Segmentation
    Zhang, Guifang
    Wong, Hon-Cheng
    Lo, Sio-Long
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 71 - 75
  • [46] A neural network based scheme for unsupervised video object segmentation
    Doulamis, AD
    Doulamis, ND
    Kollias, SD
    1998 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING - PROCEEDINGS, VOL 2, 1998, : 632 - 636
  • [47] Video Object Segmentation with 3D Convolution Network
    Tang, Huiyun
    Tao, Pin
    Ma, Rui
    Shi, Yuanchun
    ICCCV 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON CONTROL AND COMPUTER VISION, 2019, : 28 - 32
  • [48] A neural network approach for video object segmentation in traffic surveillance
    Luque, R. M.
    Dominguez, E.
    Palomo, E. J.
    Munoz, J.
    IMAGE ANALYSIS AND RECOGNITION, PROCEEDINGS, 2008, 5112 : 151 - 158
  • [49] Kernel based local matching network for video object segmentation
    Guoqiang Wang
    Lan Li
    Min Zhu
    Rui Zhao
    Xiang Zhang
    Machine Vision and Applications, 2024, 35
  • [50] Feedback Learning Gaussian Appearance Network for Video Object Segmentation
    Wang L.
    Song H.-H.
    Zhang K.-H.
    Liu Q.-S.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (03): : 834 - 842