Unified algebraic Bethe ansatz for two-dimensional lattice models

被引:15
|
作者
Martins, MJ [1 ]
机构
[1] Univ Fed Sao Carlos, Dept Fis, BR-13565905 Sao Carlos, SP, Brazil
来源
PHYSICAL REVIEW E | 1999年 / 59卷 / 06期
关键词
D O I
10.1103/PhysRevE.59.7220
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a unified formulation of the quantum inverse scattering method for lattice vertex models associated to the nonexcrptionai A(2r)((2)), A(2r-1)((2)), B-r((1)), C-r((1)), D-r+1((1)), and D-r+1((2)) Lie algebras. We recast the Yang-Baxter algebra in terms of different commutation relations between creation, annihilation, and diagonal fields. The solution of the D-r+1((2)) model is based on an interesting 16-vertex model, which is solvable without recourse to a Bethe ansatz. [S1063-651X(99)07106-8].
引用
收藏
页码:7220 / 7223
页数:4
相关论文
共 50 条
  • [31] Algebraic Bethe ansatz for the one-dimensional Hubbard model with chemical potential
    Guan, XW
    Yang, SD
    NUCLEAR PHYSICS B, 1998, 512 (03) : 601 - 615
  • [32] Algebraic Bethe ansatz for the one-dimensional Hubbard model with open boundaries
    Guan, XW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (30): : 5391 - 5404
  • [33] UNIFIED APPROACH TO THERMODYNAMIC BETHE-ANSATZ AND FINITE-SIZE CORRECTIONS FOR LATTICE MODELS AND FIELD-THEORIES
    DESTRI, C
    DEVEGA, HJ
    NUCLEAR PHYSICS B, 1995, 438 (03) : 413 - 454
  • [34] On Correlation Functions in the Coordinate and the Algebraic Bethe Ansatz
    Rafael Hernández
    Juan Miguel Nieto
    International Journal of Theoretical Physics, 62
  • [35] Algebraic Bethe ansatz for the XYZ Gaudin model
    St. Petersburg Br. Steklov Math. I., Fontanka 27, St. Petersburg 191011, Russia
    不详
    不详
    不详
    Phys Lett Sect A Gen At Solid State Phys, 3-4 (217-225):
  • [36] Algebraic Bethe ansatz for the XYZ Gaudin model
    Sklyanin, EK
    Takebe, T
    PHYSICS LETTERS A, 1996, 219 (3-4) : 217 - 225
  • [37] Algebraic Bethe ansatz for the supersymmetric U model
    Hibberd, KE
    Gould, MD
    Links, JR
    PHYSICAL REVIEW B, 1996, 54 (12) : 8430 - 8437
  • [38] The algebraic Bethe ansatz and quantum integrable systems
    Slavnov, N. A.
    RUSSIAN MATHEMATICAL SURVEYS, 2007, 62 (04) : 727 - 766
  • [39] Factorization identities and algebraic Bethe ansatz for D2(2) models
    Nepomechie, Rafael I.
    Retore, Ana L.
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, (03):
  • [40] The algebraic Bethe ansatz for scalar products in SU (3)-invariant integrable models
    Belliard, S.
    Pakuliak, S.
    Ragoucy, E.
    Slavnov, N. A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2012,