The electrically detected magnetic resonance microscope: Combining conductive atomic force microscopy with electrically detected magnetic resonance

被引:6
|
作者
Klein, Konrad [1 ]
Hauer, Benedikt [1 ]
Stoib, Benedikt [1 ]
Trautwein, Markus [1 ]
Matich, Sonja [1 ]
Huebl, Hans [2 ]
Astakhov, Oleksandr [3 ]
Finger, Friedhelm [3 ]
Bittl, Robert [4 ]
Stutzmann, Martin [1 ]
Brandt, Martin S. [1 ]
机构
[1] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[2] Bayer Akad Wissensch, Walther Meissner Inst, D-85748 Garching, Germany
[3] Forschungszentrum Julich, Photovolta IEK5, D-52425 Julich, Germany
[4] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2013年 / 84卷 / 10期
关键词
A-SI-H; ELECTRON-SPIN-RESONANCE; SOLAR-CELLS; MICROCRYSTALLINE SILICON; PARAMAGNETIC-RESONANCE; AMORPHOUS-SILICON; N-TYPE; DEPENDENT PHOTOCONDUCTIVITY; LOCAL PHOTOCONDUCTIVITY; METASTABLE DEFECTS;
D O I
10.1063/1.4827036
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present the design and implementation of a scanning probe microscope, which combines electrically detected magnetic resonance (EDMR) and (photo-) conductive atomic force microscopy ((p)cAFM). The integration of a 3-loop 2-gap X-band microwave resonator into an AFM allows the use of conductive AFM tips as a movable contact for EDMR experiments. The optical read-out of the AFM cantilever is based on an infrared laser to avoid disturbances of current measurements by absorption of straylight of the detection laser. Using amorphous silicon thin film samples with varying defect densities, the capability to detect a spatial EDMR contrast is demonstrated. Resonant current changes as low as 20 fA can be detected, allowing the method to realize a spin sensitivity of 8 x 10(6) spins/root Hz at room temperature. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Electrically detected magnetic resonance
    Fedorych, OM
    Wilamowski, Z
    Jantsch, W
    Sadowski, J
    ACTA PHYSICA POLONICA A, 2004, 105 (06) : 591 - 598
  • [2] Compact electrically detected magnetic resonance setup
    Eckardt, Michael
    Behrends, Jan
    Muenter, Detlef
    Harneit, Wolfgang
    AIP ADVANCES, 2015, 5 (04):
  • [3] Electrically detected magnetic resonance applied to polyaniline
    Graeff, C.F.O.
    Brunello, C.A.
    Faria, R.M.
    Synthetic Metals, 1999, 101 (01): : 805 - 806
  • [4] Electrically detected magnetic resonance applied to polyaniline
    Graeff, CFO
    Brunello, CA
    Faria, RM
    SYNTHETIC METALS, 1999, 101 (1-3) : 805 - 806
  • [5] Electrically detected magnetic resonance in photoexcited fullerenes
    Eickelkamp, T
    Roth, S
    Mehring, M
    MOLECULAR PHYSICS, 1998, 95 (05) : 967 - 972
  • [6] Imaging of electrically detected magnetic resonance of a silicon wafer
    Sato, T
    Yokoyama, H
    Ohya, H
    Kamada, H
    JOURNAL OF MAGNETIC RESONANCE, 2001, 153 (01) : 113 - 116
  • [7] Electrically detected magnetic resonance at different microwave frequencies
    Brandt, MS
    Bayerl, MW
    Reinacher, NM
    Wimbauer, T
    Stutzmann, M
    DEFECTS IN SEMICONDUCTORS - ICDS-19, PTS 1-3, 1997, 258-2 : 963 - 968
  • [8] Pulsed electrically detected magnetic resonance in organic semiconductors
    Boehme, C.
    McCamey, D. R.
    van Schooten, K. J.
    Baker, W. J.
    Lee, S. -Y.
    Paik, S. -Y.
    Lupton, J. M.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2009, 246 (11-12): : 2750 - 2755
  • [9] Electrically detected magnetic resonance on GaAs/AlGaAs heterostructures
    Wimbauer, T
    Hofmann, DM
    Meyer, BK
    Brandt, MS
    Brandl, T
    Bayerl, MW
    Reinacher, NM
    Stutzmann, M
    Mochizuki, Y
    Mizuta, M
    DEFECTS IN ELECTRONIC MATERIALS II, 1997, 442 : 511 - 516
  • [10] Standard and electrically detected magnetic resonance in nanocrystalline silicon
    Bronner, W
    Brüggemann, R
    Mehring, M
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 266 : 534 - 539