Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks

被引:43
|
作者
Li, Dequan [1 ,2 ]
Xu, Shuyan [1 ]
Wang, Dong [1 ]
Yan, Dejie [1 ]
机构
[1] Chinese Acad Sci, Space Opt Dept, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Mirrors;
D O I
10.1364/OL.44.001170
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the cophasing of the segmented opticalmirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective. (c) 2019 Optical Society of America
引用
收藏
页码:1170 / 1173
页数:4
相关论文
共 50 条
  • [31] Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling
    Feng Hua
    Zhou Fang
    Tong Qiu
    Chinese Journal of Chemical Engineering, 2018, 26 (12) : 2562 - 2572
  • [32] Deep convolutional and conditional neural networks for large-scale genomic data generation
    Yelmen B.
    Decelle A.
    Boulos L.L.
    Szatkownik A.
    Furtlehner C.
    Charpiat G.
    Jay F.
    PLoS Computational Biology, 2023, 19 (10 October)
  • [33] Application of convolutional neural networks to large-scale naphtha pyrolysis kinetic modeling
    Hua, Feng
    Fang, Zhou
    Qiu, Tong
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2018, 26 (12) : 2562 - 2572
  • [34] Piston detection in segmented telescopes via multiple neural networks coordination of feature-enhanced images
    Zhao, Weirui
    Wang, Hao
    Zhang, Lu
    Gu, Yun
    Zhao, Yuejin
    OPTICS COMMUNICATIONS, 2022, 507
  • [35] Large-Scale Learnable Graph Convolutional Networks
    Gao, Hongyang
    Wang, Zhengyang
    Ji, Shuiwang
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1416 - 1424
  • [36] Large-scale collecting mirrors for ITER optical diagnostic
    Samsonov, D.
    Tereschenko, I
    Mukhin, E.
    Gubal, A.
    Kapustin, Yu
    Filimonov, V
    Babinov, N.
    Dmitriev, A.
    Nikolaev, A.
    Komarevtsev, I
    Koval, A.
    Litvinov, A.
    Marchii, G.
    Razdobarin, A.
    Snigirev, L.
    Tolstyakov, S.
    Marinin, G.
    Terentev, D.
    Gorodetsky, A.
    Zalavutdinov, R.
    Markin, A.
    Bukhovets, V
    Arkhipushkin, I
    Borisov, A.
    Khripunov, V
    Mikhailovskii, V
    Modestov, V
    Kirienko, I
    Buslakov, I
    Chernakov, P.
    Mokeev, A.
    Kempenaars, M.
    Shigin, P.
    Drapiko, E.
    NUCLEAR FUSION, 2022, 62 (08)
  • [37] Detection of Large-Scale Wireless Systems via Sparse Error Recovery
    Choi, Jun Won
    Shim, Byonghyo
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (22) : 6038 - 6052
  • [38] Signaling in large-scale neural networks
    Berg, Rune W.
    Hounsgaard, Jorn
    COGNITIVE PROCESSING, 2009, 10 : S9 - S15
  • [39] Signaling in large-scale neural networks
    Rune W. Berg
    Jørn Hounsgaard
    Cognitive Processing, 2009, 10 : 9 - 15
  • [40] Analysis of large-scale digital optical neural networks by Feynman diagrams
    Martin-Pereda, JA
    Gonzalez-Marcos, AP
    APPLICATIONS AND SCIENCE OF NEURAL NETWORKS, FUZZY SYSTEMS, AND EVOLUTIONARY COMPUTATION II, 1999, 3812 : 156 - 166