Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks

被引:43
|
作者
Li, Dequan [1 ,2 ]
Xu, Shuyan [1 ]
Wang, Dong [1 ]
Yan, Dejie [1 ]
机构
[1] Chinese Acad Sci, Space Opt Dept, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Mirrors;
D O I
10.1364/OL.44.001170
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the cophasing of the segmented opticalmirrors, the Shack-Hartmann wavefront sensor is not sensitive to the submirror piston error and the large range piston errors beyond the cophasing detection range of phase diversity algorithm. It is necessary to introduce specific sensors (e.g., microlenses or prisms), but they greatly increase the complexity and manufacturing cost of the optical system. In this Letter, we introduce the convolutional neural network (CNN) to distinguish the piston error range of each submirror. To get rid of the dependence of the CNN dataset on the imaging target, we construct the feature vector by the in-focal and defocused images. The method surpasses the fundamental limit of the detection range by using different wavelengths. Finally, the results of the simulation experiment indicate that the method is effective. (c) 2019 Optical Society of America
引用
收藏
页码:1170 / 1173
页数:4
相关论文
共 50 条
  • [1] Piston alignment of segmented optics mirrors via convolutional neural networks
    Guerra-Ramos, Dailos
    Diaz-Garcia, Lara
    Trujillo-Sevilla, Juan
    Manuel Rodriguez-Ramos, Jose
    OPTICS LETTERS, 2018, 43 (17) : 4264 - 4267
  • [2] Object-independent piston diagnosing approach for segmented optical mirrors via deep convolutional neural network
    Hui, Mei
    Li, Weiqian
    Liu, Ming
    Dong, Liquan
    Kong, Lingqin
    Zhao, Yuejin
    APPLIED OPTICS, 2020, 59 (03) : 771 - 778
  • [3] On the Large-Scale Transferability of Convolutional Neural Networks
    Zheng, Liang
    Zhao, Yali
    Wang, Shengjin
    Wang, Jingdong
    Yang, Yi
    Tian, Qi
    TRENDS AND APPLICATIONS IN KNOWLEDGE DISCOVERY AND DATA MINING: PAKDD 2018 WORKSHOPS, 2018, 11154 : 27 - 39
  • [4] Global piston restoration of segmented mirrors with recurrent neural networks
    Guerra-Ramos, Dailos
    Trujillo-Sevilla, Juan
    Manuel Rodriguez-Ramos, Jose
    OSA CONTINUUM, 2020, 3 (05): : 1355 - 1363
  • [5] Object-independent tilt detection for optical sparse aperture system with large-scale piston error via deep convolution neural network
    Tang, Ju
    Ren, Zhenbo
    Wu, Xiaoyan
    Di, Jianglei
    Liu, Guodong
    Zhao, Jianlin
    OPTICS EXPRESS, 2021, 29 (25): : 41670 - 41684
  • [6] Large-scale Video Classification with Convolutional Neural Networks
    Karpathy, Andrej
    Toderici, George
    Shetty, Sanketh
    Leung, Thomas
    Sukthankar, Rahul
    Fei-Fei, Li
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1725 - 1732
  • [7] Optical flame detection using large-scale artificial neural networks
    Huseynov, J
    Boger, Z
    Shubinsky, G
    Baliga, S
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), VOLS 1-5, 2005, : 1959 - 1964
  • [8] Piston Error Automatic Correction for Segmented Mirrors via Deep Reinforcement Learning
    Li, Dequan
    Wang, Dong
    Yan, Dejie
    SENSORS, 2024, 24 (13)
  • [9] UNSUPERVISED CONVOLUTIONAL NEURAL NETWORKS FOR LARGE-SCALE IMAGE CLUSTERING
    Hsu, Chih-Chung
    Lin, Chia-Wen
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 390 - 394
  • [10] Solving Large-scale Spatial Problems with Convolutional Neural Networks
    Owerko, Damian
    Kanatsoulis, Charilaos I.
    Ribeiro, Alejandro
    FIFTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, IEEECONF, 2023, : 1064 - 1069