Neuromorphic silicon neuron circuits

被引:944
|
作者
Indiveri, Giacomo [1 ,2 ]
Linares-Barranco, Bernabe [3 ]
Hamilton, Tara Julia [4 ]
van Schaik, Andre [5 ]
Etienne-Cummings, Ralph [6 ]
Delbruck, Tobi [1 ,2 ]
Liu, Shih-Chii [1 ,2 ]
Dudek, Piotr [7 ]
Hafliger, Philipp [8 ]
Renaud, Sylvie [9 ,10 ]
Schemmel, Johannes [11 ]
Cauwenberghs, Gert [12 ,13 ]
Arthur, John [14 ]
Hynna, Kai [14 ]
Folowosele, Fopefolu [6 ]
Saighi, Sylvain [9 ,10 ]
Serrano-Gotarredona, Teresa [3 ]
Wijekoon, Jayawan [7 ]
Wang, Yingxue [15 ]
Boahen, Kwabena [14 ]
机构
[1] Univ Zurich, Inst Neuroinformat, CH-8057 Zurich, Switzerland
[2] ETH, Zurich, Switzerland
[3] Natl Microelect Ctr, Inst Microelect Sevilla, Seville, Spain
[4] Univ New S Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[5] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[6] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD USA
[7] Univ Manchester, Sch Elect & Elect Engn, Manchester, Lancs, England
[8] Univ Oslo, Dept Informat, N-0316 Oslo, Norway
[9] Bordeaux Univ, Lab Integrat Mat Syst, Bordeaux, France
[10] IMS CNRS Lab, Bordeaux, France
[11] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany
[12] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[13] Univ Calif San Diego, Inst Neural Computat, La Jolla, CA 92093 USA
[14] Stanford Univ, Stanford Bioengn, Stanford, CA 94305 USA
[15] Howard Hughes Med Inst, Ashburn, VA USA
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会; 欧洲研究理事会; 瑞士国家科学基金会;
关键词
analog VLSI; subthreshold; spiking; integrate and fire; conductance based; adaptive exponential; log-domain; circuit; SPIKING NEURONS; SYNAPTIC PLASTICITY; ANALOG; MODEL; NETWORKS; DYNAMICS; CALIBRATION; SIMULATION; DENDRITES; SYNAPSES;
D O I
10.3389/fnins.2011.00073
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin-Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] SPICE Simulation of Nanoscale Non-Crystalline Silicon TFTs in Spiking Neuron Circuits
    Cantley, Kurtis D.
    Subramaniam, Anand
    Stiegler, Harvey J.
    Chapman, Richard A.
    Vogel, Eric M.
    53RD IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 1202 - 1205
  • [32] Multiwavelength Neuromorphic Silicon Photonics
    Shastri, Bhavin J.
    Tait, Alexander N.
    Nahmias, Mitchell A.
    de Lima, Thomas Ferreira
    Peng, Hsuan-Tung
    Prucnal, Paul R.
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [33] MESO Neuron: A Low-Power and Ultrafast Spin Neuron for Neuromorphic Computing
    Zeng, Junwei
    Chen, Yabo
    Liu, Jiahao
    Huang, Chenglong
    Xu, Nuo
    Li, Cheng
    Fang, Liang
    IEEE MAGNETICS LETTERS, 2022, 13
  • [34] A SILICON NEURON
    MAHOWALD, M
    DOUGLAS, R
    NATURE, 1991, 354 (6354) : 515 - 518
  • [35] Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
    Miranda, Enrique
    Sune, Jordi
    MATERIALS, 2020, 13 (04)
  • [36] Scalable Networks of Neuromorphic Photonic Integrated Circuits
    Xu, Lei
    de Lima, Thomas Ferreira
    Peng, Hsuan-Tung
    Bilodeau, Simon
    Tait, Alexander
    Shastri, Bhavin J.
    Prucnal, Paul R.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2022, 28 (06)
  • [37] Testing of Neuromorphic Circuits: Structural vs Functional
    Gebregiorgis, Anteneh
    Tahoori, Mehdi B.
    2019 IEEE INTERNATIONAL TEST CONFERENCE (ITC), 2019,
  • [38] Development of a Neuromorphic Network Using BioSFQ Circuits
    Golden, Evan B.
    Semenov, Vasili K.
    Tolpygo, Sergey K.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2025, 35 (05)
  • [39] A Braitenberg Vehicle Based on Memristive Neuromorphic Circuits
    Wang, Cong
    Yang, Zaizheng
    Wang, Shuang
    Wang, Pengfei
    Wang, Chen-Yu
    Pan, Chen
    Cheng, Bin
    Liang, Shi-Jun
    Miao, Feng
    ADVANCED INTELLIGENT SYSTEMS, 2020, 2 (01)
  • [40] Neuromorphic computing: From devices to integrated circuits
    Saxena, Vishal
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2021, 39 (01):