Neuromorphic silicon neuron circuits

被引:941
|
作者
Indiveri, Giacomo [1 ,2 ]
Linares-Barranco, Bernabe [3 ]
Hamilton, Tara Julia [4 ]
van Schaik, Andre [5 ]
Etienne-Cummings, Ralph [6 ]
Delbruck, Tobi [1 ,2 ]
Liu, Shih-Chii [1 ,2 ]
Dudek, Piotr [7 ]
Hafliger, Philipp [8 ]
Renaud, Sylvie [9 ,10 ]
Schemmel, Johannes [11 ]
Cauwenberghs, Gert [12 ,13 ]
Arthur, John [14 ]
Hynna, Kai [14 ]
Folowosele, Fopefolu [6 ]
Saighi, Sylvain [9 ,10 ]
Serrano-Gotarredona, Teresa [3 ]
Wijekoon, Jayawan [7 ]
Wang, Yingxue [15 ]
Boahen, Kwabena [14 ]
机构
[1] Univ Zurich, Inst Neuroinformat, CH-8057 Zurich, Switzerland
[2] ETH, Zurich, Switzerland
[3] Natl Microelect Ctr, Inst Microelect Sevilla, Seville, Spain
[4] Univ New S Wales, Sch Elect Engn & Telecommun, Sydney, NSW 2052, Australia
[5] Univ Sydney, Sch Elect & Informat Engn, Sydney, NSW 2006, Australia
[6] Johns Hopkins Univ, Whiting Sch Engn, Baltimore, MD USA
[7] Univ Manchester, Sch Elect & Elect Engn, Manchester, Lancs, England
[8] Univ Oslo, Dept Informat, N-0316 Oslo, Norway
[9] Bordeaux Univ, Lab Integrat Mat Syst, Bordeaux, France
[10] IMS CNRS Lab, Bordeaux, France
[11] Heidelberg Univ, Kirchhoff Inst Phys, Heidelberg, Germany
[12] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[13] Univ Calif San Diego, Inst Neural Computat, La Jolla, CA 92093 USA
[14] Stanford Univ, Stanford Bioengn, Stanford, CA 94305 USA
[15] Howard Hughes Med Inst, Ashburn, VA USA
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会; 瑞士国家科学基金会; 欧洲研究理事会;
关键词
analog VLSI; subthreshold; spiking; integrate and fire; conductance based; adaptive exponential; log-domain; circuit; SPIKING NEURONS; SYNAPTIC PLASTICITY; ANALOG; MODEL; NETWORKS; DYNAMICS; CALIBRATION; SIMULATION; DENDRITES; SYNAPSES;
D O I
10.3389/fnins.2011.00073
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin-Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A Neuromorphic Quadratic, Integrate, and Fire Silicon Neuron with Adaptive Gain
    Basham, Eric J.
    Parent, David W.
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 1771 - 1776
  • [2] Integrated Circuit with Memristor Emulator Array and Neuron Circuits for Neuromorphic Pattern Recognition
    Ranjan, Rajeev
    Kyrmanidis, Alexandros
    Hellweg, Wolf Lukas
    Ponce, Pablo Mendoza
    Abu Saleh, Lait
    Schroeder, Dietmar
    Krautschneider, Wolfgang H.
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 265 - 268
  • [3] An Asynchronous AER Circuits with Rotation Priority Tree Arbiter for Neuromorphic Hardware with Analog Neuron
    Wei, Jinsong
    Zhang, Jilin
    Zhang, Xumeng
    Wu, Zuheng
    Dou, Chunmeng
    Shi, Tuo
    Chen, Hong
    Liu, Qi
    2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ASIC (ASICON), 2019,
  • [4] Simulation-based effective comparative analysis of neuron circuits for neuromorphic computation systems
    Deepthi, M. S.
    Shashidhara, H. R.
    Raghu, Jayaramu
    Rudraswamy, S. B.
    NEUROCOMPUTING, 2025, 614
  • [5] Neuromodulation of Neuromorphic Circuits
    Rib, Luka
    Sepulchre, Rodolphe
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (08) : 3028 - 3040
  • [6] Neuromorphic CMOL circuits
    Likharev, KK
    2003 THIRD IEEE CONFERENCE ON NANOTECHNOLOGY, VOLS ONE AND TWO, PROCEEDINGS, 2003, : 339 - 342
  • [7] Integrated Circuit with Memristor Emulator Array and Neuron Circuits for Biologically Inspired Neuromorphic Pattern Recognition
    Ranjan, Rajeev
    Ponce, Pablo Mendoza
    Hellweg, Wolf Lukas
    Kyrmanidis, Alexandros
    Abu Saleh, Lait
    Schroeder, Dietmar
    Krautschneider, Wolfgang H.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2017, 26 (11)
  • [8] Piezoelectric neuron for neuromorphic computing
    Li, Wenjie
    Tan, Shan
    Fan, Zhen
    Chen, Zhiwei
    Ou, Jiali
    Liu, Kun
    Tao, Ruiqiang
    Tian, Guo
    Qin, Minghui
    Zeng, Min
    Lu, Xubing
    Zhou, Guofu
    Gao, Xingsen
    Liu, Jun-Ming
    JOURNAL OF MATERIOMICS, 2025, 11 (05)
  • [9] Neuromorphic Photonic Integrated Circuits
    Peng, Hsuan-Tung
    Nahmias, Mitchell A.
    de Lima, Thomas Ferreira
    Tait, Alexander N.
    Shastri, Bhavin J.
    Prucnal, Paul R.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (06)
  • [10] Neuromorphic architectures for nanoetectronic circuits
    Türel, Ö
    Lee, JH
    Ma, XL
    Likharev, KK
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2004, 32 (05) : 277 - 302