AI planner assisted test generation

被引:2
|
作者
Andrews, AKA [1 ]
Zhu, CH
Scheetz, M
Dahlman, E
Howe, AE
机构
[1] Washington State Univ, Sch Elect Engn & Comp Sci, Pullman, WA 99163 USA
[2] Colorado State Univ, Dept Comp Sci, Ft Collins, CO 80523 USA
基金
美国国家科学基金会;
关键词
system test; AI planning; high level test objectives;
D O I
10.1023/A:1021686406575
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper describes an AI planner assisted approach to generate test cases for system testing based on high level test objectives. We use four levels of test generation: the metaprocessor, the preprocessor, the AI planner, and the postprocessor levels. Test generation is based on an extended UML model of the system under test and a mapping of high-level test objectives into initial and goal conditions of the planner. Test objectives are derived from a series of interviews with professional testers. We suggest various options for test criteria related to test objectives. The AI planner was used to generate hundreds of test cases for a robot controlled tape silo. The planner generated tests within a reasonable time. It was successful for each test objective given.
引用
收藏
页码:225 / 259
页数:35
相关论文
共 50 条
  • [21] Automated Generation of Environments to Test the General Learning Capabilities of AI Agents
    Coleman, Oliver J.
    Blair, Alan D.
    Clune, Jeff
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 161 - 168
  • [22] Flexible and scalable query access planning using an AI planner
    Ambite, JL
    Knoblock, CA
    1997 IEEE KNOWLEDGE AND DATA ENGINEERING EXCHANGE WORKSHOP, PROCEEDINGS, 1997, : 132 - 139
  • [23] Mexar2: AI solves mission planner problems
    Cesta, Amedeo
    Cortellessa, Gabriella
    Fratini, Simone
    Oddi, Angelo
    Denis, Michel
    Donati, Alessandro
    Policella, Nicola
    Rabenau, Erhard
    Schulster, Jonathan
    IEEE INTELLIGENT SYSTEMS, 2007, 22 (04) : 12 - 19
  • [24] ASSOCIATING AI PLANNER ENTITIES WITH AN UNDERLYING TIME POINT NETWORK
    DRABBLE, B
    KIRBY, R
    LECTURE NOTES IN ARTIFICIAL INTELLIGENCE, 1991, 522 : 27 - 38
  • [25] AI-assisted Synthesis in Next Generation EDA: Promises, Challenges, and Prospects
    Wu, Nan
    Xie, Yuan
    Hao, Cong
    2022 IEEE 40TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2022), 2022, : 207 - 214
  • [26] Next Generation of Journey Planner in a Smart City
    Yu, Liang
    Shao, Dongxu
    Wu, Huayu
    2015 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOP (ICDMW), 2015, : 422 - 429
  • [27] COSMO-SkyMed Second Generation Planner
    Covello, Fabio
    Scopa, Tiziana
    Serva, Stefano
    Caltagiron, Francesco
    De Luca, Giuseppe Francesco
    Pacaccio, Alessandro
    Profili, Mario
    SENSORS, SYSTEMS, AND NEXT-GENERATION SATELLITES XVIII, 2014, 9241
  • [28] Program Comprehension for User-Assisted Test Oracle Generation
    Kanstren, Teemu
    2009 FOURTH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING ADVANCES (ICSEA 2009), 2009, : 118 - 127
  • [29] Test Criteria for Model-Checking-Assisted Test Case Generation: A Computational Study
    Zeng, Bolong
    Tan, Li
    2012 IEEE 13TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2012, : 600 - 607
  • [30] Automating Test Case Generation from Class Diagram Using Generative AI
    Naimi, Lahbib
    Bouziane, El Mahi
    Jakimi, Abdeslam
    ADVANCES IN SMART MEDICAL, IOT & ARTIFICIAL INTELLIGENCE, VOL 1, ICSMAI 2024, 2024, 11 : 133 - 140