On the existence of periodic solutions for a class of p-Laplacian system

被引:6
|
作者
Peng, Shiguo [1 ]
Xu, Zhiting
机构
[1] Guangdong Univ Technol, Coll Appl Math, Guangzhou 510090, Peoples R China
[2] S China Normal Univ, Dept Math, Guangzhou 510631, Peoples R China
关键词
periodic solutions; p-Laplacian; coincidence degree;
D O I
10.1016/j.jmaa.2006.01.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using generalized Borsuk theorem in coincidence degree theory, some criteria to guarantee the existence of omega-periodic solutions for a class of p-Laplacian system are derived. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:166 / 174
页数:9
相关论文
共 50 条
  • [31] EXISTENCE OF SOLUTIONS FOR A CLASS OF p-LAPLACIAN SYSTEMS WITH IMPULSIVE EFFECTS
    Chen, Peng
    Tang, X. H.
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (03): : 803 - 828
  • [32] Existence of nonnegative solutions for a class of p-Laplacian equations in RN
    Dai, Shuang
    Yang, Jianfu
    ADVANCED NONLINEAR STUDIES, 2007, 7 (01) : 107 - 129
  • [33] Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations
    Wang, Juan
    Tang, Chun-Lei
    BOUNDARY VALUE PROBLEMS, 2006, 2006 (1)
  • [34] An existence result on positive solutions for a class of p-Laplacian systems
    Hai, DD
    Shivaji, R
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (07) : 1007 - 1010
  • [35] On existence of weak solutions for a p-Laplacian system at resonance
    Bui Quoc Hung
    Hoang Quoc Toan
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2016, 110 (01) : 33 - 47
  • [36] On existence of weak solutions for a p-Laplacian system at resonance
    Bui Quoc Hung
    Hoang Quoc Toan
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2016, 110 : 33 - 47
  • [37] Nonconstant periodic solutions for a class of ordinary p-Laplacian systems
    Li, Chun
    Agarwal, Ravi P.
    Pu, Yang
    Tang, Chun-Lei
    BOUNDARY VALUE PROBLEMS, 2016,
  • [38] Nonconstant periodic solutions for a class of ordinary p-Laplacian systems
    Chun Li
    Ravi P Agarwal
    Yang Pu
    Chun-Lei Tang
    Boundary Value Problems, 2016
  • [39] Periodic solutions for a Rayleigh system of p-Laplacian type
    Peng, Shiguo
    Zhu, Siming
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) : 274 - 279
  • [40] Existence of periodic solutions for a p-Laplacian neutral functional differential equation
    Liang Feng
    Guo Lixiang
    Lu Shiping
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 427 - 436