A machine learning approach to automatic stroke segmentation

被引:11
|
作者
Herold, James [1 ]
Stahovich, Thomas F. [2 ]
机构
[1] Univ Calif Riverside, Dept Comp Sci & Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
来源
COMPUTERS & GRAPHICS-UK | 2014年 / 38卷
基金
美国国家科学基金会;
关键词
Pen stroke segmentation; Sketch understanding; Pen-based user interfaces; Machine learning;
D O I
10.1016/j.cag.2013.10.005
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present ClassySeg, a technique for segmenting hand-drawn pen strokes into lines and arcs. ClassySeg employs machine learning techniques to infer the segmentation intended by the drawer. The technique begins by identifying a set of candidate segment windows, each comprising a curvature maximum and its neighboring points. Features are computed for each point in each window based on curvature and other geometric properties. Most of these features are adapted from numerous prior segmentation approaches, effectively combining their strengths. These features are used to train a statistical classifier to identify which candidate windows contain true segment points. ClassySeg is more accurate than previous techniques for both user-independent and user-optimized training conditions. More importantly, ClassySeg represents a movement away from prior, heuristic-based approaches, toward a more general and extensible technique. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:357 / 364
页数:8
相关论文
共 50 条
  • [31] A Machine Learning Approach for the Automatic Classification of Schizophrenic Discourse
    Allende-Cid, Hector
    Zamora, Juan
    Alfaro-Faccio, Pedro
    Francisca Alonso-Sanchez, Maria
    IEEE ACCESS, 2019, 7 : 45544 - 45553
  • [32] Automatic Grading of Computer Programs : A Machine Learning Approach
    Srikant, Shashank
    Aggarwal, Varun
    2013 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2013), VOL 1, 2013, : 85 - 92
  • [33] A Graph Machine Learning approach to Automatic Dementia Detection
    Stoppa, Edoardo
    Di Donato, Guido Walter
    Poles, Isabella
    D'Arnese, Eleonora
    Parde, Natalie
    Santambrogio, Marco Domenico
    2023 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, BHI, 2023,
  • [34] Automatic Mosaic Digitalization: a Deep Learning approach to tessera segmentation
    Felicetti, Andrea
    Albiero, Alessandra
    Gabrielli, Roberto
    Pierdicca, Roberto
    Paolanti, Marina
    Zingaretti, Primo
    Malinverni, Eva Savina
    2018 IEEE INTERNATIONAL CONFERENCE ON METROLOGY FOR ARCHAEOLOGY AND CULTURAL HERITAGE (METROARCHAEO 2018), 2018, : 132 - 136
  • [35] Deep learning approach for automatic segmentation of auricular acupoint divisions
    Gao Z.
    Jia S.
    Li Q.
    Lu D.
    Zhang S.
    Xiao W.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2024, 41 (01): : 114 - 120
  • [36] An automatic deep learning approach for coronary artery calcium segmentation
    Santini, G.
    Della Latta, D.
    Martini, N.
    Valvano, G.
    Gori, A.
    Ripoli, A.
    Susini, C. L.
    Landini, L.
    Chiappino, D.
    EMBEC & NBC 2017, 2018, 65 : 374 - 377
  • [37] A Machine Learning Approach to Mining Brain Stroke Data
    Mroczek, T.
    Grzymala-Busse, J. W.
    Hippe, Z. S.
    Jurczak, P.
    HUMAN-COMPUTER SYSTEMS INTERACTION: BACKGROUNDS AND APPLICATIONS 2, PT 2, 2012, 99 : 147 - 158
  • [38] Automatic Acute Ischemic Stroke Lesion Segmentation Using Semi supervised Learning
    Zhao, Bin
    Ding, Shuxue
    Wu, Hong
    Liu, Guohua
    Cao, Chen
    Jin, Song
    Liu, Zhiyang
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 723 - 733
  • [39] Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem
    Wang, Jun Yi
    Ngo, Michael M.
    Hessl, David
    Hagerman, Randi J.
    Rivera, Susan M.
    PLOS ONE, 2016, 11 (05):
  • [40] A Machine Learning approach for Graph-based Page Segmentation
    Maia, Ana L. L. M.
    Julca-Aguilar, Frank D.
    Hirata, Nina S. T.
    PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2018, : 424 - 431