Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy

被引:161
|
作者
Sadhukhan, Pritam [1 ]
Kundu, Mousumi [1 ]
Chatterjee, Sharmistha [1 ]
Ghosh, Noyel [1 ]
Manna, Prasenjit [2 ]
Das, Joydeep [3 ]
Sil, Parames C. [1 ]
机构
[1] Bose Inst, Div Mol Med, P-1-12,CIT Scheme 7 M, Kolkata 700054, W Bengal, India
[2] CSIR North East Inst Sci & Technol, Biol Sci & Technol Div, Jorhat 785006, Assam, India
[3] Shoolini Univ Biotechnol & Management Sci, Sch Chem, PO Sultanpur, Solan 173229, HP, India
关键词
Anticancer; Quercetin; Reactive oxygen species; ZnO nanoparticles; PBA conjugated nanoparticles; MESOPOROUS SILICA NANOPARTICLES; ZNO QUANTUM DOTS; PHENYLBORONIC ACID; MACROMOLECULAR THERAPEUTICS; SIALIC-ACID; DRUG; METABOLISM; CISPLATIN; DOXORUBICIN; MECHANISM;
D O I
10.1016/j.msec.2019.02.096
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Naturally occurring bioactive compounds are gaining much importance as anti-tumor agents in recent times due to their high therapeutic potential and less systemic toxicity. However, different preclinical and clinical studies have noted significant shortcomings, such as nonspecific tumor targeting and low bioavailability which limit their usage in therapeutics. Therefore, a safe and compatible nanoparticle mediated controlled drug delivery system is in high demand to enable effective transport of the drug candidates in the tumor tissue. Herein, we have synthesized phenylboronic acid (PBA) conjugated Zinc oxide nanoparticles (PBA-ZnO), loaded with quercetin (a bioflavonoid widely found in plants), with zeta potential around - 10.2 mV and diameter below 40 nm. Presence of PBA moieties over the nanoparticle surface facilitates targeted delivery of quercetin to the sialic acid over-expressed cancer cells. Moreover, Quercetin loaded PBA-ZnO nanoparticles (denoted as PBAZnO-Q) showed pH responsive drug release behavior. Results suggested that PBA-ZnO-Q induced apoptotic cell death in human breast cancer cells (MCF-7) via enhanced oxidative stress and mitochondrial damage. In line with the in vitro results, PBA-ZnO-Q was found to be effective in reducing tumor growth in EAC tumor bearing mice. Most interestingly, PBA-ZnO-Q is found to reduce tumor associated toxicity in liver, kidney and spleen. The cytotoxic potential of the nanohybrid is attributed to the combinatorial cytotoxic effects of quercetin and ZnO in the cancer cells. Overall, the presented data highlighted the chemotherapeutic potential of the novel nanohybrid, PBA-ZnO-Q which can be considered for clinical cancer treatment.
引用
收藏
页码:129 / 140
页数:12
相关论文
共 50 条
  • [21] Magnetic and pH-responsive magnetite/chitosan (core/shell) nanoparticles for dual-targeted methotrexate delivery in cancer therapy
    Medina-Moreno, Ana
    El-Hammadi, Mazen M.
    Martinez-Soler, Gema I.
    Ramos, Javier G.
    Garcia-Garcia, Gracia
    Arias, Jose L.
    DRUG DELIVERY AND TRANSLATIONAL RESEARCH, 2024, : 1646 - 1659
  • [22] pH-Responsive Fluorescence Enhanced Nanogel for Targeted Delivery of AUR and CDDP Against Breast Cancer
    Cao, Zhiwen
    Li, Wen
    Liu, Rui
    Li, Chenxi
    Song, Yurong
    Liu, Guangzhi
    Chen, Youwen
    Lu, Cheng
    Lu, Aiping
    Liu, Yuanyan
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2020, 15 : 8369 - 8382
  • [23] Novel pH-responsive biodegradable organosilica nanoparticles as drug delivery system for cancer therapy
    Yang, Shun
    Fan, Jie
    Lin, Shiting
    Wang, Yaru
    Liu, Chang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2020, 585 (585)
  • [24] Polymer grafted magnetic graphene oxide as a potential nanocarrier for pH-responsive delivery of sparingly soluble quercetin against breast cancer cells
    Matiyani, Monika
    Rana, Anita
    Pal, Mintu
    Rana, Sravendra
    Melkani, Anand B.
    Sahoo, Nanda Gopal
    RSC ADVANCES, 2022, 12 (05) : 2574 - 2588
  • [25] Dual pH-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy
    Liu, Yuanyuan
    Qiao, Linan
    Zhang, Sipei
    Wan, Guoyun
    Chen, Bowei
    Zhou, Ping
    Zhang, Ning
    Wang, Yinsong
    ACTA BIOMATERIALIA, 2018, 66 : 310 - 324
  • [26] Erbitux conjugated zinc oxide nanoparticles to enhance antitumor efficiency via targeted drug delivery system for breast cancer therapy
    Vimala, K.
    Soundarapandian, K.
    ANNALS OF ONCOLOGY, 2017, 28 : 41 - 41
  • [27] Targeted therapy for cancer using pH-responsive nanocarrier systems
    Manchun, Somkamon
    Dass, Crispin R.
    Sriamornsak, Pornsak
    LIFE SCIENCES, 2012, 90 (11-12) : 381 - 387
  • [28] pH-Responsive Drug Delivery Nanoplatforms as Smart Carriers of Unsymmetrical Bisacridines for Targeted Cancer Therapy
    Pilch, Joanna
    Potega, Agnieszka
    Kowalczyk, Agata
    Kasprzak, Artur
    Kowalik, Patrycja
    Bujak, Piotr
    Paluszkiewicz, Ewa
    Augustin, Ewa
    Nowicka, Anna M.
    PHARMACEUTICS, 2023, 15 (01)
  • [29] Colon-targeted delivery of tacrolimus using pH-responsive polymeric nanoparticles for murine colitis therapy
    Cai, Xiaoran
    Wang, Xiaolei
    He, Muye
    Wang, Yan
    Lan, Minbo
    Zhao, Yuzheng
    Gao, Feng
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2021, 606
  • [30] Catechol Polymers for pH-Responsive, Targeted Drug Delivery to Cancer Cells
    Su, Jing
    Chen, Feng
    Cryns, Vincent L.
    Messersmith, Phillip B.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (31) : 11850 - 11853