Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks

被引:169
|
作者
Dvornek, Nicha C. [1 ]
Ventola, Pamela [2 ]
Pelphrey, Kevin A. [3 ,4 ]
Duncan, James S. [1 ,5 ,6 ]
机构
[1] Dept Radiol & Biomed Imaging, New Haven, CT 06520 USA
[2] Yale Sch Med, Ctr Child Study, New Haven, CT USA
[3] George Washington Univ, Autism & Neurodev Disorders Inst, Washington, DC USA
[4] Childrens Natl Med Ctr, Washington, DC 20010 USA
[5] Yale Univ, Dept Biomed Engn, New Haven, CT USA
[6] Yale Univ, Dept Elect Engn, New Haven, CT USA
关键词
CLASSIFICATION;
D O I
10.1007/978-3-319-67389-9_42
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However, current efforts that have identified ASD with high accuracy were limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site data have shown much lower accuracy. In this paper, we propose the use of recurrent neural networks with long short-term memory (LSTMs) for classification of individuals with ASD and typical controls directly from the resting-state fMRI time-series. We used the entire large, multi-site Autism Brain Imaging Data Exchange (ABIDE) I dataset for training and testing the LSTM models. Under a cross-validation framework, we achieved classification accuracy of 68.5%, which is 9% higher than previously reported methods that used fMRI data from the whole ABIDE cohort. Finally, we presented interpretation of the trained LSTM weights, which highlight potential functional networks and regions that are known to be implicated in ASD.
引用
收藏
页码:362 / 370
页数:9
相关论文
共 50 条
  • [21] Evolving Long Short-Term Memory Networks
    Neto, Vicente Coelho Lobo
    Passos, Leandro Aparecido
    Papa, Joao Paulo
    COMPUTATIONAL SCIENCE - ICCS 2020, PT II, 2020, 12138 : 337 - 350
  • [22] Phenotyping Superagers Using Resting-State fMRI
    de Godoy, L. L.
    Studart-Neto, A.
    de Paula, D. R.
    Green, N.
    Halder, A.
    Arantes, P.
    Chaim, K. T.
    Moraes, N. C.
    Yassuda, M. S.
    Nitrini, R.
    Dresler, M.
    Leite, C. da Costa
    Panovska-Griffiths, J.
    Soddu, A.
    Bisdas, S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2023, 44 (04) : 424 - 433
  • [23] Connecting memory and functional brain networks in older adults: a resting-state fMRI study
    Jori L. Waner
    Hanna K. Hausman
    Jessica N. Kraft
    Cheshire Hardcastle
    Nicole D. Evangelista
    Andrew O’Shea
    Alejandro Albizu
    Emanuel M. Boutzoukas
    Emily J. Van Etten
    Pradyumna K. Bharadwaj
    Hyun Song
    Samantha G. Smith
    Steven T. DeKosky
    Georg A. Hishaw
    Samuel S. Wu
    Michael Marsiske
    Ronald Cohen
    Gene E. Alexander
    Eric C. Porges
    Adam J. Woods
    GeroScience, 2023, 45 : 3079 - 3093
  • [24] State of Charge Estimation of Lithium-Ion Batteries Using Long Short-Term Memory and Bi-directional Long Short-Term Memory Neural Networks
    Namboothiri K.M.
    Sundareswaran K.
    Nayak P.S.R.
    Simon S.P.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (01) : 175 - 182
  • [25] Connecting memory and functional brain networks in older adults: a resting-state fMRI study
    Waner, Jori L.
    Hausman, Hanna K.
    Kraft, Jessica N.
    Hardcastle, Cheshire
    Evangelista, Nicole D.
    O'Shea, Andrew
    Albizu, Alejandro
    Boutzoukas, Emanuel M.
    Van Etten, Emily J.
    Bharadwaj, Pradyumna K.
    Song, Hyun
    Smith, Samantha G.
    Dekosky, Steven T.
    Hishaw, Georg A.
    Wu, Samuel S.
    Marsiske, Michael
    Cohen, Ronald
    Alexander, Gene E.
    Porges, Eric C.
    Woods, Adam J.
    GEROSCIENCE, 2023, 45 (05) : 3079 - 3093
  • [26] Simple 1-D Convolutional Networks for Resting-State fMRI Based Classification in Autism
    El Gazzar, Ahmed
    Cerliani, Leonardo
    van Wingen, Guido
    Thomas, Rajat Mani
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [27] Scalable Distribution Systems State Estimation Using Long Short-Term Memory Networks as Surrogates
    Cao, Zhiyuan
    Wang, Yubo
    Chu, Chi-Cheng
    Gadh, Rajit
    IEEE ACCESS, 2020, 8 (23359-23368): : 23359 - 23368
  • [28] Intrapartum Fetal-State Classification using Long Short-Term Memory Neural Networks
    Warrick, Philip A.
    Hamilton, Emily F.
    2017 COMPUTING IN CARDIOLOGY (CINC), 2017, 44
  • [29] Deepfake Detection using Capsule Networks and Long Short-Term Memory Networks
    Mehra, Akul
    Spreeuwers, Luuk
    Strisciuglio, Nicola
    VISAPP: PROCEEDINGS OF THE 16TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS - VOL. 4: VISAPP, 2021, : 407 - 414
  • [30] Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory
    Khazaee, Ali
    Ebrahimzadeh, Ata
    Babajani-Feremi, Abbas
    CLINICAL NEUROPHYSIOLOGY, 2015, 126 (11) : 2132 - 2141