Optimizing the Gaussian excitation function in the finite difference time domain method

被引:3
|
作者
Shin, CS [1 ]
Nevels, R [1 ]
机构
[1] Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA
关键词
finite difference time domain (FDTD); Gaussian excitation; numerical dispersion; phase error;
D O I
10.1109/13.983216
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A systematic method is presented for determining the optimal pulsewidth and variance of a Gaussian excitation function in the finite difference time domain (FDTD) method. We highlight the interaction of several criteria, such as the stability condition, machine precision limits, the numerical grid cutoff frequency, and the dispersion relation, that play crucial roles in the design of the initial pulse. Optimal Gaussian pulse design is desirable if numerical dispersion, an inherent yet unavoidable property of the standard second-order FDTD Yee algorithm, is to be minimized. A method for determining the phase error of a Gaussian pulse is also presented.
引用
收藏
页码:15 / 18
页数:4
相关论文
共 50 条
  • [21] An interesting phenomenon in the finite difference time domain simulation of a Gaussian pulse propagation in a waveguide
    Dou, WB
    Yung, EKN
    RADIO SCIENCE, 2001, 36 (06) : 1307 - 1314
  • [22] Optimizing Antennas Distribution on Complicated Structures by Conformal Finite-difference Time Domain
    Han Yu-nan
    Zheng Zhen-xin
    Sun Ai-min
    2012 6TH ASIA-PACIFIC CONFERENCE ON ENVIRONMENTAL ELECTROMAGNETICS (CEEM' 2012), 2012, : 54 - 57
  • [23] Pseudospectral Time Domain Method Implementation Using Finite Difference Time Stepping
    Gunes, Ahmet
    Aksoy, Serkan
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2018, 28 (05) : 365 - 367
  • [24] Subwavelength structured surfaces with a broadband antireflection function analyzed by using a finite difference time domain method
    Ting, Chia-Jen
    Chen, Chi-Feng
    Hsu, Chin-Ju
    OPTIK, 2010, 121 (12): : 1069 - 1074
  • [25] Computation of effective propagation parameters in the optical domain with a finite difference time domain method
    Chanal, H
    Borderies, P
    Segaud, JP
    Saillard, M
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2006, 100 (1-3): : 77 - 90
  • [26] Improvement of Computational Performance of Implicit Finite Difference Time Domain Method
    Rouf, Hasan K.
    PROGRESS IN ELECTROMAGNETICS RESEARCH M, 2015, 43 : 1 - 8
  • [27] Solving the Schrodinger equation using the finite difference time domain method
    Sudiarta, I. Wayan
    Geldart, D. J. Wallace
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (08) : 1885 - 1896
  • [28] Analysis of Moving Bodies with a Direct Finite Difference Time Domain Method
    Marvasti, Mohammad
    Boutayeb, Halim
    APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL, 2023, 38 (11): : 829 - 840
  • [29] POYNTINGS THEOREM FOR THE FINITE-DIFFERENCE - TIME-DOMAIN METHOD
    DEMOERLOOSE, J
    DEZUTTER, D
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1995, 8 (05) : 257 - 260
  • [30] Introduction to the Segmented Finite-Difference Time-Domain Method
    Wu, Yan
    Wassell, Ian
    IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) : 1364 - 1367