Identification of optimal reference genes for transcriptomic analyses in normal and diseased human heart

被引:46
|
作者
Molina, Cristina E. [1 ,2 ,3 ]
Jacquet, Eric [4 ]
Ponien, Prishila [4 ]
Munoz-Guijosa, Christian [5 ]
Baczko, Istvan [6 ]
Maier, Lars S. [7 ]
Donzeau-Gouge, Patrick [8 ]
Dobrev, Dobromir [9 ]
Fischmeister, Rodolphe [1 ]
Garnier, Anne [1 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, INSERM, UMR S 1180, Chatenay Malabry, France
[2] Georg August Univ Gottingen, Inst Pharmacol & Toxicol, Heart Res Ctr Gottingen, Univ Med Ctr, Gottingen, Germany
[3] German Ctr Cardiovasc Res DZHK, Partner Site Gottingen, Gottingen, Germany
[4] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Chim Subst Nat,UPR 2301, Gif Sur Yvette, France
[5] Hosp Santa Creu & Sant Pau, Cardiac Surg Dept, Barcelona, Spain
[6] Univ Szeged, Dept Pharmacol & Pharmacotherapy, Szeged, Hungary
[7] Univ Hosp Regensburg, Univ Heart Ctr, Dept Internal Med 2, Regensburg, Germany
[8] Inst Hosp Jacques Cartier, F-91300 Massy, France
[9] Univ Duisburg Essen, Inst Pharmacol, West German Heart & Vasc Ctr, Essen, Germany
关键词
Human heart; Heart failure; Atrial fibrillation; Quantitative real-time polymerase chain reaction; Reference genes; Ventricle; Atrium; MESSENGER-RNA LEVELS; REAL-TIME; ATRIAL-FIBRILLATION; EXPRESSION PROFILES; DOWN-REGULATION; BETA-ACTIN; PCR DATA; RT-PCR; FAILURE; NORMALIZATION;
D O I
10.1093/cvr/cvx182
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Quantitative real-time RT-PCR (RT-qPCR) has become the method of choice for mRNA quantification, but requires an accurate normalization based on the use of reference genes showing invariant expression across various pathological conditions. Only few data exist on appropriate reference genes for the human heart. The objective of this study was to determine a set of suitable reference genes in human atrial and ventricular tissues, from right and left cavities in control and in cardiac diseases. Methods and results We assessed the expression of 16 reference genes (ACTB, B2M, GAPDH, GUSB, HMBS, HPRT1, IPO8, PGK1, POLR2A, PPIA, RPLP0, TBP, TFRC, UBC, YWHAZ, 18S) in tissues from: right and left ventricles from healthy controls and heart failure (HF) patients; right-atrial tissue from patients in sinus rhythm with (SRd) or without (SRnd) atrial dilatation, patients with paroxysmal (pAF) or chronic (cAF) atrial fibrillation or with HF; and left-atrial tissue from patients in SR or cAF. Consensual analysis (by geNorm and Normfinder algorithms, BestKeeper software tool and comparative delta-Ct method) of the variability scores obtained for each reference gene expression shows that the most stably expressed genes are: GAPDH, GUSB, IPO8, POLR2A, and YWHAZ when comparing either right and left ventricle or ventricle from healthy controls and HF patients; GAPDH, IPO8, POLR2A, PPIA, and RPLP0 when comparing either right and left atrium or right atria from all pathological groups. ACTB, TBP, TFRC, and 18S genes were identified as the least stable. Conclusions The overall most stable reference genes across different heart cavities and disease conditions were GAPDH, IPO8, POLR2A and PPIA. YWHAZ or GUSB could be added to this set for some specific experiments. This study should provide useful guidelines for reference gene selection in RT-qPCR studies in human heart.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 50 条
  • [31] Identification of new reference genes with stable expression patterns for gene expression studies using human cancer and normal cell lines
    Racz, Gergely Attila
    Nagy, Nikolett
    Tovari, Jozsef
    Apati, Agota
    Vertessy, Beata G.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [32] Identification of new reference genes with stable expression patterns for gene expression studies using human cancer and normal cell lines
    Gergely Attila Rácz
    Nikolett Nagy
    József Tóvári
    Ágota Apáti
    Beáta G. Vértessy
    Scientific Reports, 11
  • [33] Identification and validation of stable reference genes for RT-qPCR analyses of Kobresia littledalei seedlings
    Sun, Haoyang
    Li, Chunping
    Li, Siyu
    Ma, Jiaxin
    Li, Shuo
    Li, Xin
    Gao, Cai
    Yang, Rongchen
    Ma, Nan
    Yang, Jing
    Yang, Peizhi
    He, Xueqing
    Hu, Tianming
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [34] Transcriptomic analyses and machinelearning methods reveal dysregulated key genes and potential pathogenesis in human osteoarthritic cartilage
    Zhao, D.
    Zeng, L.
    Liang, G.
    Luo, M.
    Pan, J.
    Dou, Y.
    Lin, F.
    Huang, H.
    Yang, W.
    Liu, J.
    BONE & JOINT RESEARCH, 2024, 13 (02): : 66 - 82
  • [35] Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart
    Chen, Peng-Sheng
    HEART RHYTHM, 2007, 4 (08) : 1113 - 1113
  • [36] Regional and tissue specific transcript signatures of ion channel genes in the non-diseased human heart
    Gaborit, Nathalie
    Le Bouter, Sabrina
    Szuts, Viktoria
    Varro, Andras
    Escande, Denis
    Nattel, Stanley
    Demolombe, Sophie
    JOURNAL OF PHYSIOLOGY-LONDON, 2007, 582 (02): : 675 - 693
  • [37] Transcriptomic analyses reveal the upregulation of the fatty acids metabolism genes in Thalassiosira weissflogii during low optimal phosphate concentration
    Zakaria, Muhammad Faiz
    Kamal, Ahmad Hanafi Ahmad
    Afiqah-Aleng, Nor
    Abd Wahid, Mohd Effendy
    Azzam, Ghows
    Katayama, Tomoyo
    Takahashi, Kazutaka
    Bakar, Kamariah
    Tan, Hock Seng
    Jusoh, Malinna
    AQUACULTURE, 2025, 596
  • [38] Identification of differentially expressed genes in normal and tumor human gastric tissue
    Jung, MH
    Kim, SC
    Jeon, GA
    Kim, SH
    Kim, Y
    Choi, KS
    Park, SI
    Joe, MK
    Kimm, K
    GENOMICS, 2000, 69 (03) : 281 - 286
  • [39] Evaluation of RNA from human trabecular bone and identification of stable reference genes
    Cepollaro, Simona
    Della Bella, Elena
    de Biase, Dario
    Visani, Michela
    Fini, Milena
    JOURNAL OF CELLULAR PHYSIOLOGY, 2018, 233 (06) : 4401 - 4407
  • [40] Identification of suitable reference genes for measurement of gene expression in human cervical tissues
    Shen, Yuanming
    Li, Yang
    Ye, Feng
    Wang, Fenfen
    Lu, Weiguo
    Xie, Xing
    ANALYTICAL BIOCHEMISTRY, 2010, 405 (02) : 224 - 229