Identification of optimal reference genes for transcriptomic analyses in normal and diseased human heart

被引:46
|
作者
Molina, Cristina E. [1 ,2 ,3 ]
Jacquet, Eric [4 ]
Ponien, Prishila [4 ]
Munoz-Guijosa, Christian [5 ]
Baczko, Istvan [6 ]
Maier, Lars S. [7 ]
Donzeau-Gouge, Patrick [8 ]
Dobrev, Dobromir [9 ]
Fischmeister, Rodolphe [1 ]
Garnier, Anne [1 ]
机构
[1] Univ Paris Saclay, Univ Paris Sud, INSERM, UMR S 1180, Chatenay Malabry, France
[2] Georg August Univ Gottingen, Inst Pharmacol & Toxicol, Heart Res Ctr Gottingen, Univ Med Ctr, Gottingen, Germany
[3] German Ctr Cardiovasc Res DZHK, Partner Site Gottingen, Gottingen, Germany
[4] Univ Paris Saclay, Univ Paris Sud, CNRS, Inst Chim Subst Nat,UPR 2301, Gif Sur Yvette, France
[5] Hosp Santa Creu & Sant Pau, Cardiac Surg Dept, Barcelona, Spain
[6] Univ Szeged, Dept Pharmacol & Pharmacotherapy, Szeged, Hungary
[7] Univ Hosp Regensburg, Univ Heart Ctr, Dept Internal Med 2, Regensburg, Germany
[8] Inst Hosp Jacques Cartier, F-91300 Massy, France
[9] Univ Duisburg Essen, Inst Pharmacol, West German Heart & Vasc Ctr, Essen, Germany
关键词
Human heart; Heart failure; Atrial fibrillation; Quantitative real-time polymerase chain reaction; Reference genes; Ventricle; Atrium; MESSENGER-RNA LEVELS; REAL-TIME; ATRIAL-FIBRILLATION; EXPRESSION PROFILES; DOWN-REGULATION; BETA-ACTIN; PCR DATA; RT-PCR; FAILURE; NORMALIZATION;
D O I
10.1093/cvr/cvx182
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Quantitative real-time RT-PCR (RT-qPCR) has become the method of choice for mRNA quantification, but requires an accurate normalization based on the use of reference genes showing invariant expression across various pathological conditions. Only few data exist on appropriate reference genes for the human heart. The objective of this study was to determine a set of suitable reference genes in human atrial and ventricular tissues, from right and left cavities in control and in cardiac diseases. Methods and results We assessed the expression of 16 reference genes (ACTB, B2M, GAPDH, GUSB, HMBS, HPRT1, IPO8, PGK1, POLR2A, PPIA, RPLP0, TBP, TFRC, UBC, YWHAZ, 18S) in tissues from: right and left ventricles from healthy controls and heart failure (HF) patients; right-atrial tissue from patients in sinus rhythm with (SRd) or without (SRnd) atrial dilatation, patients with paroxysmal (pAF) or chronic (cAF) atrial fibrillation or with HF; and left-atrial tissue from patients in SR or cAF. Consensual analysis (by geNorm and Normfinder algorithms, BestKeeper software tool and comparative delta-Ct method) of the variability scores obtained for each reference gene expression shows that the most stably expressed genes are: GAPDH, GUSB, IPO8, POLR2A, and YWHAZ when comparing either right and left ventricle or ventricle from healthy controls and HF patients; GAPDH, IPO8, POLR2A, PPIA, and RPLP0 when comparing either right and left atrium or right atria from all pathological groups. ACTB, TBP, TFRC, and 18S genes were identified as the least stable. Conclusions The overall most stable reference genes across different heart cavities and disease conditions were GAPDH, IPO8, POLR2A and PPIA. YWHAZ or GUSB could be added to this set for some specific experiments. This study should provide useful guidelines for reference gene selection in RT-qPCR studies in human heart.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 50 条
  • [1] Identification of suitable reference genes for gene expression studies in normal and pathological human heart tissues
    Molina, C. E.
    Barbet, R.
    Jacquet, E.
    Munoz Guijosa, C.
    Baczko, I.
    Maier, L.
    Fischmeister, R.
    Garnier, A.
    EUROPEAN HEART JOURNAL, 2014, 35 : 952 - 952
  • [2] Identification of suitable reference genes for gene expression studies in normal and pathological human heart tissues
    Molina, C. E.
    Barbet, R.
    Jacquet, E.
    Munoz Guijosa, C.
    Baczko, I.
    Maier, L.
    Fischmeister, R.
    Garnier, A.
    CARDIOVASCULAR RESEARCH, 2014, 103
  • [3] Sex-specific transcriptomic regulation in the diseased human heart
    Kararigas, Georgios
    Summer, Holger
    Baczko, Istvan
    Golz, Stefan
    Regitz-Zagrosek, Vera
    FASEB JOURNAL, 2016, 30
  • [4] Identification of optimal reference genes for quantitative PCR studies on human mesenchymal stem cells
    Li, Xiuying
    Yang, Qiwei
    Bai, Jinping
    Yang, Yanyan
    Zhong, Lingzhi
    Wang, Yimin
    MOLECULAR MEDICINE REPORTS, 2015, 11 (02) : 1304 - 1311
  • [5] Transcriptomic Analyses for Identification and Prioritization of Genes Associated With Alzheimer's Disease in Humans
    Shi, Yuchen
    Liu, Hui
    Yang, Changbo
    Xu, Kang
    Cai, Yangyang
    Wang, Zhao
    Zhao, Zheng
    Shao, Tingting
    Li, Yixue
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [6] Transcriptomic Analyses of Akebiae Fructus and Identification of Genes Related to Triterpenoid Saponin Biosynthesis
    Fang, Wentao
    Qian, Chengcheng
    Wu, Rui
    Yang, Yatian
    Ou, Jinmei
    PLANT MOLECULAR BIOLOGY REPORTER, 2024,
  • [7] Identification of reference genes for quantitative PCR analyses in developing mouse gonads
    Yokoyama, Toshifumi
    Omotehara, Takuya
    Hirano, Tetsushi
    Kubota, Naoto
    Yanai, Shogo
    Hasegawa, Chinatsu
    Takada, Tadashi
    Mantani, Yohei
    Hoshi, Nobuhiko
    JOURNAL OF VETERINARY MEDICAL SCIENCE, 2018, 80 (10): : 1534 - 1539
  • [8] CREATINE-KINASE ISOENZYME IN DISEASED AND NORMAL HUMAN HEART-MUSCLE
    TSCHURTSCHENTHALER, M
    SCHWAB, I
    KREUZER, E
    KEMKES, BM
    NEUMEIER, D
    KNEDEL, M
    JOURNAL OF CLINICAL CHEMISTRY AND CLINICAL BIOCHEMISTRY, 1988, 26 (11): : 775 - 776
  • [9] Selection of the optimal reference genes for expression analyses in different materials of Eriobotrya japonica
    Wenbing Su
    Yuan Yuan
    Ling Zhang
    Yuanyuan Jiang
    Xiaoqing Gan
    Yunlu Bai
    Jiangrong Peng
    Jincheng Wu
    Yuexue Liu
    Shunquan Lin
    Plant Methods, 15
  • [10] Selection of the optimal reference genes for expression analyses in different materials of Eriobotrya japonica
    Su, Wenbing
    Yuan, Yuan
    Zhang, Ling
    Jiang, Yuanyuan
    Gan, Xiaoqing
    Bai, Yunlu
    Peng, Jiangrong
    Wu, Jincheng
    Liu, Yuexue
    Lin, Shunquan
    PLANT METHODS, 2019, 15 (1)