Explicit formulae for sums of products of Bernoulli polynomials, including poly-Bernoulli polynomials

被引:0
|
作者
Kamano, Ken [1 ]
Komatsu, Takao [2 ]
机构
[1] Osaka Inst Technol, Dept Math, Asahi, Osaka 5358585, Japan
[2] Hirosaki Univ, Grad Sch Sci & Technol, Hirosaki, Aomori 0368561, Japan
来源
RAMANUJAN JOURNAL | 2014年 / 33卷 / 02期
基金
日本学术振兴会;
关键词
Poly-Bernoulli numbers; Sums of products;
D O I
10.1007/s11139-013-9509-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study sums of products of Bernoulli polynomials, including poly-Bernoulli polynomials. As a main result, for any positive integer , explicit expressions of sums of products are given. This result extends that of the first author, as well as the famous Euler formula about sums of two products of Bernoulli numbers.
引用
收藏
页码:301 / 313
页数:13
相关论文
共 50 条
  • [31] Study of Degenerate Poly-Bernoulli Polynomials by λ-Umbral Calculus
    Jang, Lee-Chae
    San Kim, Dae
    Kim, Hanyoung
    Kim, Taekyun
    Lee, Hyunseok
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 129 (01): : 393 - 408
  • [32] Some applications of degenerate poly-Bernoulli numbers and polynomials
    Kim, Dae San
    Kim, Taekyun
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 415 - 421
  • [33] A note on poly-Bernoulli numbers and polynomials of the second kind
    Taekyun Kim
    Hyuck In Kwon
    Sang Hun Lee
    Jong Jin Seo
    Advances in Difference Equations, 2014
  • [34] Generalized harmonic numbers via poly-Bernoulli polynomials
    Kargin, Levent
    Cenkci, Mehmet
    Dil, Ayhan
    Can, Mumun
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 365 - 386
  • [35] A note on poly-Bernoulli numbers and polynomials of the second kind
    Kim, Taekyun
    Kwon, Hyuck In
    Lee, Sang Hun
    Seo, Jong Jin
    ADVANCES IN DIFFERENCE EQUATIONS, 2014,
  • [36] FULLY DEGENERATE HERMITE POLY-BERNOULLI NUMBERS AND POLYNOMIALS
    Khan, W. A.
    Nisar, K. S.
    Araci, S.
    Acikgoz, M.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2018, 17 (06): : 461 - 478
  • [37] Degenerate poly-Bernoulli polynomials with umbral calculus viewpoint
    Kim, Dae San
    Kim, Taekyun
    Kwon, Hyuck In
    Mansour, Toufik
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [38] Hermite and poly-Bernoulli mixed-type polynomials
    Kim, Dae San
    Kim, Taekyun
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [39] Study of degenerate poly-bernoulli polynomials by λ-umbral calculus
    Jang, Lee-Chae
    Kim, Dae San
    Kim, Hanyoung
    Kim, Taekyun
    Lee, Hyunseok
    CMES - Computer Modeling in Engineering and Sciences, 2021, 129 (01): : 393 - 408
  • [40] Generalized incomplete poly-Bernoulli polynomials and generalized incomplete poly-Cauchy polynomials
    Komatsu, Takao
    Luca, Florian
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2017, 13 (02) : 371 - 391