Research on Option Pricing Model Driven by Fractional Jump-Diffusion Process

被引:0
|
作者
Wei, Zhao [1 ]
机构
[1] Huaihai Inst Technol, Sch Business, Lianyungang 150001, Peoples R China
关键词
Fractional Brownian motion; Jump-diffusion process; Quasi-martingale;
D O I
暂无
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Considering long memory of volatility of stock return and possibility of important information, this paper explores into the fractional jump-diffusion process. Under the fractional risk neutral measure, the unique equivalent measure is proposed on the basis of Girsanov fractional theorem. With quasi-martingale method, the option pricing model in fractional market is solved. The results indicate that the long memory parameter is an important factor in option pricing.
引用
收藏
页码:965 / 969
页数:5
相关论文
共 50 条
  • [31] Option Pricing Under Jump-Diffusion Processes with Regime Switching
    Ratanov, Nikita
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2016, 18 (03) : 829 - 845
  • [32] Jump-diffusion option pricing with non-IID jumps
    Zou, Lin
    Camara, Antonio
    Li, Weiping
    INTERNATIONAL JOURNAL OF FINANCIAL ENGINEERING, 2024,
  • [33] Option Pricing Under Jump-Diffusion Processes with Regime Switching
    Nikita Ratanov
    Methodology and Computing in Applied Probability, 2016, 18 : 829 - 845
  • [34] Approximating GARCH-jump models, jump-diffusion processes, and option pricing
    Duan, JC
    Ritchken, P
    Sun, ZQ
    MATHEMATICAL FINANCE, 2006, 16 (01) : 21 - 52
  • [35] Approximations of option prices for a jump-diffusion model
    Wee, IS
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2006, 43 (02) : 383 - 398
  • [36] A positivity-preserving numerical scheme for option pricing model with transaction costs under jump-diffusion process
    Zhou, Shengwu
    Han, Lei
    Li, Wei
    Zhang, Yan
    Han, Miao
    COMPUTATIONAL & APPLIED MATHEMATICS, 2015, 34 (03): : 881 - 900
  • [37] A positivity-preserving numerical scheme for option pricing model with transaction costs under jump-diffusion process
    Shengwu Zhou
    Lei Han
    Wei Li
    Yan Zhang
    Miao Han
    Computational and Applied Mathematics, 2015, 34 : 881 - 900
  • [38] Option Pricing under Two-Factor Stochastic Volatility Jump-Diffusion Model
    Deng, Guohe
    COMPLEXITY, 2020, 2020
  • [39] Quanto option pricing with a jump diffusion process
    Li, Wenhan
    Liu, Lixia
    Li, Cuixiang
    Lv, Guiwen
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (05) : 2095 - 2109
  • [40] Pricing Arithmetic Asian Put Option with Early Exercise Boundary under Jump-Diffusion Process
    Laham, M. F.
    Ibrahim, S. N. I.
    Kilicman, A.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2020, 14 (01): : 1 - 15